优化多核的片外访问

W. Ding, Xulong Tang, M. Kandemir, Yuanrui Zhang, Emre Kultursay
{"title":"优化多核的片外访问","authors":"W. Ding, Xulong Tang, M. Kandemir, Yuanrui Zhang, Emre Kultursay","doi":"10.1145/2737924.2737989","DOIUrl":null,"url":null,"abstract":"In a network-on-chip (NoC) based manycore architecture, an off-chip data access (main memory access) needs to travel through the on-chip network, spending considerable amount of time within the chip (in addition to the memory access latency). In addition, it contends with on-chip (cache) accesses as both use the same NoC resources. In this paper, focusing on data-parallel, multithreaded applications, we propose a compiler-based off-chip data access localization strategy, which places data elements in the memory space such that an off-chip access traverses a minimum number of links (hops) to reach the memory controller that handles this access. This brings three main benefits. First, the network latency of off-chip accesses gets reduced; second, the network latency of on-chip accesses gets reduced; and finally, the memory latency of off-chip accesses improves, due to reduced queue latencies. We present an experimental evaluation of our optimization strategy using a set of 13 multithreaded application programs under both private and shared last-level caches. The results collected emphasize the importance of optimizing the off-chip data accesses.","PeriodicalId":104101,"journal":{"name":"Proceedings of the 36th ACM SIGPLAN Conference on Programming Language Design and Implementation","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"Optimizing off-chip accesses in multicores\",\"authors\":\"W. Ding, Xulong Tang, M. Kandemir, Yuanrui Zhang, Emre Kultursay\",\"doi\":\"10.1145/2737924.2737989\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In a network-on-chip (NoC) based manycore architecture, an off-chip data access (main memory access) needs to travel through the on-chip network, spending considerable amount of time within the chip (in addition to the memory access latency). In addition, it contends with on-chip (cache) accesses as both use the same NoC resources. In this paper, focusing on data-parallel, multithreaded applications, we propose a compiler-based off-chip data access localization strategy, which places data elements in the memory space such that an off-chip access traverses a minimum number of links (hops) to reach the memory controller that handles this access. This brings three main benefits. First, the network latency of off-chip accesses gets reduced; second, the network latency of on-chip accesses gets reduced; and finally, the memory latency of off-chip accesses improves, due to reduced queue latencies. We present an experimental evaluation of our optimization strategy using a set of 13 multithreaded application programs under both private and shared last-level caches. The results collected emphasize the importance of optimizing the off-chip data accesses.\",\"PeriodicalId\":104101,\"journal\":{\"name\":\"Proceedings of the 36th ACM SIGPLAN Conference on Programming Language Design and Implementation\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 36th ACM SIGPLAN Conference on Programming Language Design and Implementation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2737924.2737989\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 36th ACM SIGPLAN Conference on Programming Language Design and Implementation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2737924.2737989","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

摘要

在基于片上网络(NoC)的多核架构中,片外数据访问(主存储器访问)需要通过片上网络,在芯片内花费相当多的时间(除了存储器访问延迟)。此外,它与片上(缓存)访问竞争,因为两者使用相同的NoC资源。在本文中,重点关注数据并行、多线程应用程序,我们提出了一种基于编译器的片外数据访问本地化策略,该策略将数据元素放置在内存空间中,以便片外访问遍历最小数量的链接(跳数)以到达处理此访问的内存控制器。这带来了三个主要好处。首先,降低了片外访问的网络延迟;其次,降低了片上访问的网络延迟;最后,由于队列延迟减少,片外访问的内存延迟得到改善。我们使用私有和共享最后一级缓存下的13个多线程应用程序对我们的优化策略进行了实验评估。收集的结果强调了优化片外数据访问的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimizing off-chip accesses in multicores
In a network-on-chip (NoC) based manycore architecture, an off-chip data access (main memory access) needs to travel through the on-chip network, spending considerable amount of time within the chip (in addition to the memory access latency). In addition, it contends with on-chip (cache) accesses as both use the same NoC resources. In this paper, focusing on data-parallel, multithreaded applications, we propose a compiler-based off-chip data access localization strategy, which places data elements in the memory space such that an off-chip access traverses a minimum number of links (hops) to reach the memory controller that handles this access. This brings three main benefits. First, the network latency of off-chip accesses gets reduced; second, the network latency of on-chip accesses gets reduced; and finally, the memory latency of off-chip accesses improves, due to reduced queue latencies. We present an experimental evaluation of our optimization strategy using a set of 13 multithreaded application programs under both private and shared last-level caches. The results collected emphasize the importance of optimizing the off-chip data accesses.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信