用于流量和声音测量的双线热传感器的优化

J. van Honschoten, G. Krijnen, V. Svetovoy, H. de Bree, M. Elwenspoek
{"title":"用于流量和声音测量的双线热传感器的优化","authors":"J. van Honschoten, G. Krijnen, V. Svetovoy, H. de Bree, M. Elwenspoek","doi":"10.1109/MEMSYS.2001.906594","DOIUrl":null,"url":null,"abstract":"The Microflown is an acoustic sensor measuring particle velocity instead of pressure, which is usually measured by conventional microphones. In this paper an analytical model is presented to describe the physical processes that govern the behaviour of the sensor and determine its sensitivity. The Microflown consists of two heaters that act simultaneously as sensors. Forced convection by an acoustic wave leads to a small perturbation of this temperature profile, resulting in a temperature difference between the two sensors. This temperature difference, to which the sensitivity is proportional, is calculated with perturbation theory. Consequently the frequency dependent behaviour of the sensitivity is analysed; it is found that there are two important corner frequencies, the first related to the time constant velocity of heat diffusion between the sensors, the second related to the heat capacity of the heaters. The developed model is verified by experiments. Previously a very good model has been given for the performance of the Microflown in a channel, i.e. with both heaters between fixed walls walls in the positive and negative z-direction. Here, a model is presented that describes the situation of the present used sensors: without walls under and above them. Model predictions are compared to experimental results.","PeriodicalId":311365,"journal":{"name":"Technical Digest. MEMS 2001. 14th IEEE International Conference on Micro Electro Mechanical Systems (Cat. No.01CH37090)","volume":"77 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":"{\"title\":\"Optimisation of a two-wire thermal sensor for flow and sound measurements\",\"authors\":\"J. van Honschoten, G. Krijnen, V. Svetovoy, H. de Bree, M. Elwenspoek\",\"doi\":\"10.1109/MEMSYS.2001.906594\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Microflown is an acoustic sensor measuring particle velocity instead of pressure, which is usually measured by conventional microphones. In this paper an analytical model is presented to describe the physical processes that govern the behaviour of the sensor and determine its sensitivity. The Microflown consists of two heaters that act simultaneously as sensors. Forced convection by an acoustic wave leads to a small perturbation of this temperature profile, resulting in a temperature difference between the two sensors. This temperature difference, to which the sensitivity is proportional, is calculated with perturbation theory. Consequently the frequency dependent behaviour of the sensitivity is analysed; it is found that there are two important corner frequencies, the first related to the time constant velocity of heat diffusion between the sensors, the second related to the heat capacity of the heaters. The developed model is verified by experiments. Previously a very good model has been given for the performance of the Microflown in a channel, i.e. with both heaters between fixed walls walls in the positive and negative z-direction. Here, a model is presented that describes the situation of the present used sensors: without walls under and above them. Model predictions are compared to experimental results.\",\"PeriodicalId\":311365,\"journal\":{\"name\":\"Technical Digest. MEMS 2001. 14th IEEE International Conference on Micro Electro Mechanical Systems (Cat. No.01CH37090)\",\"volume\":\"77 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-01-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Technical Digest. MEMS 2001. 14th IEEE International Conference on Micro Electro Mechanical Systems (Cat. No.01CH37090)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MEMSYS.2001.906594\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Technical Digest. MEMS 2001. 14th IEEE International Conference on Micro Electro Mechanical Systems (Cat. No.01CH37090)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MEMSYS.2001.906594","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

摘要

microfly是一种测量粒子速度的声学传感器,而不是通常由传统麦克风测量的压力。本文提出了一个解析模型来描述控制传感器行为和确定其灵敏度的物理过程。microfly由两个同时充当传感器的加热器组成。声波的强制对流导致温度剖面的微小扰动,从而导致两个传感器之间的温差。这种温度差与灵敏度成正比,用微扰理论计算。因此,分析了灵敏度的频率依赖行为;发现有两个重要的角频率,第一个与传感器之间热扩散的时间恒定速度有关,第二个与加热器的热容量有关。通过实验验证了所建立的模型。先前已经给出了一个非常好的模型来描述microfly在通道中的性能,即两个加热器在正负z方向的固定壁面之间。在这里,提出了一个模型,描述了目前使用的传感器的情况:下面和上面没有墙。将模型预测结果与实验结果进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimisation of a two-wire thermal sensor for flow and sound measurements
The Microflown is an acoustic sensor measuring particle velocity instead of pressure, which is usually measured by conventional microphones. In this paper an analytical model is presented to describe the physical processes that govern the behaviour of the sensor and determine its sensitivity. The Microflown consists of two heaters that act simultaneously as sensors. Forced convection by an acoustic wave leads to a small perturbation of this temperature profile, resulting in a temperature difference between the two sensors. This temperature difference, to which the sensitivity is proportional, is calculated with perturbation theory. Consequently the frequency dependent behaviour of the sensitivity is analysed; it is found that there are two important corner frequencies, the first related to the time constant velocity of heat diffusion between the sensors, the second related to the heat capacity of the heaters. The developed model is verified by experiments. Previously a very good model has been given for the performance of the Microflown in a channel, i.e. with both heaters between fixed walls walls in the positive and negative z-direction. Here, a model is presented that describes the situation of the present used sensors: without walls under and above them. Model predictions are compared to experimental results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信