{"title":"芯片多处理器的运行时3-D堆叠缓存管理","authors":"Jongpil Jung, K. Kang, G. Micheli, C. Kyung","doi":"10.1109/ISQED.2013.6523592","DOIUrl":null,"url":null,"abstract":"Three-dimensional (3-D) memory stacking is one of the most promising solutions to tackle memory bandwidth problems in chip multiprocessors. In this work, we propose an efficient runtime 3-D cache management technique which not only takes advantage of the low memory access latency through vertical interconnections, but also exploits runtime memory access demand of applications which varies dynamically with time. Experimental results show that the proposed method offers performance improvement by up to 26.7% and on average 13.1% compared with a configuration of private stacked cache.","PeriodicalId":127115,"journal":{"name":"International Symposium on Quality Electronic Design (ISQED)","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Runtime 3-D stacked cache management for chip-multiprocessors\",\"authors\":\"Jongpil Jung, K. Kang, G. Micheli, C. Kyung\",\"doi\":\"10.1109/ISQED.2013.6523592\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Three-dimensional (3-D) memory stacking is one of the most promising solutions to tackle memory bandwidth problems in chip multiprocessors. In this work, we propose an efficient runtime 3-D cache management technique which not only takes advantage of the low memory access latency through vertical interconnections, but also exploits runtime memory access demand of applications which varies dynamically with time. Experimental results show that the proposed method offers performance improvement by up to 26.7% and on average 13.1% compared with a configuration of private stacked cache.\",\"PeriodicalId\":127115,\"journal\":{\"name\":\"International Symposium on Quality Electronic Design (ISQED)\",\"volume\":\"59 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Symposium on Quality Electronic Design (ISQED)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISQED.2013.6523592\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Quality Electronic Design (ISQED)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISQED.2013.6523592","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Runtime 3-D stacked cache management for chip-multiprocessors
Three-dimensional (3-D) memory stacking is one of the most promising solutions to tackle memory bandwidth problems in chip multiprocessors. In this work, we propose an efficient runtime 3-D cache management technique which not only takes advantage of the low memory access latency through vertical interconnections, but also exploits runtime memory access demand of applications which varies dynamically with time. Experimental results show that the proposed method offers performance improvement by up to 26.7% and on average 13.1% compared with a configuration of private stacked cache.