基于AP聚类的非侵入式负载识别方法

Xiaolu Sun, Lisi Xue, Jianquan Fang, Z. Xie, Chunmin Li, Bolu Ran
{"title":"基于AP聚类的非侵入式负载识别方法","authors":"Xiaolu Sun, Lisi Xue, Jianquan Fang, Z. Xie, Chunmin Li, Bolu Ran","doi":"10.1109/iSPEC53008.2021.9735692","DOIUrl":null,"url":null,"abstract":"Non-intrusive load identification can help users understand the power consumption of various equipment, and at the same time can help the grid understand the load composition of the power system. This paper proposes a nonintrusive load identification method based on AP clustering to realize effective non-intrusive identification of partial resident load. First, the method uses the sliding window bilateral cumulative sum transient event detection algorithm to determine the switching time of the device. Then, three types of characteristics are extracted: active power change, reactive power change, and fundamental current amplitude change. After that, AP clustering algorithm is used to divide the three types of load characteristics. Finally, the BLUED data set is used to verify the effectiveness of the method.","PeriodicalId":417862,"journal":{"name":"2021 IEEE Sustainable Power and Energy Conference (iSPEC)","volume":"221 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Non-Intrusive Load Identification Method Based on AP Clustering\",\"authors\":\"Xiaolu Sun, Lisi Xue, Jianquan Fang, Z. Xie, Chunmin Li, Bolu Ran\",\"doi\":\"10.1109/iSPEC53008.2021.9735692\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Non-intrusive load identification can help users understand the power consumption of various equipment, and at the same time can help the grid understand the load composition of the power system. This paper proposes a nonintrusive load identification method based on AP clustering to realize effective non-intrusive identification of partial resident load. First, the method uses the sliding window bilateral cumulative sum transient event detection algorithm to determine the switching time of the device. Then, three types of characteristics are extracted: active power change, reactive power change, and fundamental current amplitude change. After that, AP clustering algorithm is used to divide the three types of load characteristics. Finally, the BLUED data set is used to verify the effectiveness of the method.\",\"PeriodicalId\":417862,\"journal\":{\"name\":\"2021 IEEE Sustainable Power and Energy Conference (iSPEC)\",\"volume\":\"221 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE Sustainable Power and Energy Conference (iSPEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/iSPEC53008.2021.9735692\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Sustainable Power and Energy Conference (iSPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iSPEC53008.2021.9735692","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

非侵入式负荷识别可以帮助用户了解各种设备的用电量,同时也可以帮助电网了解电力系统的负荷构成。本文提出了一种基于AP聚类的非侵入性负荷识别方法,实现了对部分驻留负荷的有效非侵入性识别。首先,该方法采用滑动窗口双边累积和瞬态事件检测算法确定器件的开关时间。然后提取三种特征:有功功率变化、无功功率变化和基波电流幅值变化。然后,使用AP聚类算法对三类负载特征进行划分。最后,利用BLUED数据集验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Non-Intrusive Load Identification Method Based on AP Clustering
Non-intrusive load identification can help users understand the power consumption of various equipment, and at the same time can help the grid understand the load composition of the power system. This paper proposes a nonintrusive load identification method based on AP clustering to realize effective non-intrusive identification of partial resident load. First, the method uses the sliding window bilateral cumulative sum transient event detection algorithm to determine the switching time of the device. Then, three types of characteristics are extracted: active power change, reactive power change, and fundamental current amplitude change. After that, AP clustering algorithm is used to divide the three types of load characteristics. Finally, the BLUED data set is used to verify the effectiveness of the method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信