加强脑机平台的移动开发

Amr S. Elsawy, S. Eldawlatly, M. Taher, G. Aly
{"title":"加强脑机平台的移动开发","authors":"Amr S. Elsawy, S. Eldawlatly, M. Taher, G. Aly","doi":"10.1109/ICECS.2015.7440355","DOIUrl":null,"url":null,"abstract":"Advances in Brain-Computer Interfaces (BCIs) have made BCIs come in use mainly for the disabled to communicate. Practical usage of BCIs requires that the whole BCI system be portable so that disabled subjects can use them anywhere. The key aspect in mobility is to use mobile devices for processing by developing software applications with low-computational complexity. In this thesis, a low-computational P300 speller application is developed for Android using an Emotiv wireless EEG neuroheadset. Given the limited resources of mobile devices, a novel ensemble classifier approach is proposed that uses Principal Component Analysis (PCA) features to identify evoked P300 signals from EEG recordings. The performance of the method is demonstrated on benchmark data and on our own data. Results demonstrate the capability of the PCA ensemble classifier to classify P300 data recorded using the Emotiv neuroheadset with an average online classification accuracy of 97.22%.","PeriodicalId":215448,"journal":{"name":"2015 IEEE International Conference on Electronics, Circuits, and Systems (ICECS)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Enhancement of mobile development of brain-computer platforms\",\"authors\":\"Amr S. Elsawy, S. Eldawlatly, M. Taher, G. Aly\",\"doi\":\"10.1109/ICECS.2015.7440355\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Advances in Brain-Computer Interfaces (BCIs) have made BCIs come in use mainly for the disabled to communicate. Practical usage of BCIs requires that the whole BCI system be portable so that disabled subjects can use them anywhere. The key aspect in mobility is to use mobile devices for processing by developing software applications with low-computational complexity. In this thesis, a low-computational P300 speller application is developed for Android using an Emotiv wireless EEG neuroheadset. Given the limited resources of mobile devices, a novel ensemble classifier approach is proposed that uses Principal Component Analysis (PCA) features to identify evoked P300 signals from EEG recordings. The performance of the method is demonstrated on benchmark data and on our own data. Results demonstrate the capability of the PCA ensemble classifier to classify P300 data recorded using the Emotiv neuroheadset with an average online classification accuracy of 97.22%.\",\"PeriodicalId\":215448,\"journal\":{\"name\":\"2015 IEEE International Conference on Electronics, Circuits, and Systems (ICECS)\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Conference on Electronics, Circuits, and Systems (ICECS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICECS.2015.7440355\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Electronics, Circuits, and Systems (ICECS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICECS.2015.7440355","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

脑机接口(bci)的进步使得bci主要用于残疾人的交流。脑机接口的实际使用要求整个脑机接口系统是可移植的,以便残疾受试者可以在任何地方使用它们。移动性的关键方面是通过开发具有低计算复杂性的软件应用程序来使用移动设备进行处理。本文利用Emotiv无线脑电图神经耳机,开发了一款基于Android的低计算量P300拼写应用程序。鉴于移动设备资源有限,提出了一种新的集成分类器方法,利用主成分分析(PCA)特征从脑电记录中识别诱发P300信号。在基准数据和我们自己的数据上验证了该方法的性能。结果表明,PCA集成分类器能够对Emotiv神经耳机记录的P300数据进行分类,平均在线分类准确率为97.22%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhancement of mobile development of brain-computer platforms
Advances in Brain-Computer Interfaces (BCIs) have made BCIs come in use mainly for the disabled to communicate. Practical usage of BCIs requires that the whole BCI system be portable so that disabled subjects can use them anywhere. The key aspect in mobility is to use mobile devices for processing by developing software applications with low-computational complexity. In this thesis, a low-computational P300 speller application is developed for Android using an Emotiv wireless EEG neuroheadset. Given the limited resources of mobile devices, a novel ensemble classifier approach is proposed that uses Principal Component Analysis (PCA) features to identify evoked P300 signals from EEG recordings. The performance of the method is demonstrated on benchmark data and on our own data. Results demonstrate the capability of the PCA ensemble classifier to classify P300 data recorded using the Emotiv neuroheadset with an average online classification accuracy of 97.22%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信