{"title":"模块化IP核的功耗感知多频封装架构设计与优化","authors":"Dan Zhao, Unni Chandran, H. Fujiwara","doi":"10.1109/ASPDAC.2007.358071","DOIUrl":null,"url":null,"abstract":"This paper proposes a novel power-aware multi-frequency wrapper architecture design to achieve at-speed testability. The trade-offs between power dissipation, scan time and bandwidth are well handled by gating off certain virtual cores at a time while parallelizing the remaining. A shelf packing based optimization algorithm is proposed to design and optimize the wrapper architecture while minimizing the test time under power and bandwidth constraints.","PeriodicalId":362373,"journal":{"name":"2007 Asia and South Pacific Design Automation Conference","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Shelf Packing to the Design and Optimization of A Power-Aware Multi-Frequency Wrapper Architecture for Modular IP Cores\",\"authors\":\"Dan Zhao, Unni Chandran, H. Fujiwara\",\"doi\":\"10.1109/ASPDAC.2007.358071\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a novel power-aware multi-frequency wrapper architecture design to achieve at-speed testability. The trade-offs between power dissipation, scan time and bandwidth are well handled by gating off certain virtual cores at a time while parallelizing the remaining. A shelf packing based optimization algorithm is proposed to design and optimize the wrapper architecture while minimizing the test time under power and bandwidth constraints.\",\"PeriodicalId\":362373,\"journal\":{\"name\":\"2007 Asia and South Pacific Design Automation Conference\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 Asia and South Pacific Design Automation Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASPDAC.2007.358071\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 Asia and South Pacific Design Automation Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASPDAC.2007.358071","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Shelf Packing to the Design and Optimization of A Power-Aware Multi-Frequency Wrapper Architecture for Modular IP Cores
This paper proposes a novel power-aware multi-frequency wrapper architecture design to achieve at-speed testability. The trade-offs between power dissipation, scan time and bandwidth are well handled by gating off certain virtual cores at a time while parallelizing the remaining. A shelf packing based optimization algorithm is proposed to design and optimize the wrapper architecture while minimizing the test time under power and bandwidth constraints.