{"title":"用于生物传感的ZnO纳米线场效应晶体管研究进展","authors":"Nonofo Mathiba Jack Ditshego","doi":"10.5772/intechopen.93707","DOIUrl":null,"url":null,"abstract":"The last 19 years have seen intense research made on zinc oxide (ZnO) material, mainly due to the ability of converting the natural n-type material into p-type. For a long time, the p-type state was impossible to attain and maintain. This chapter focuses on ways of improving the doped ZnO material which acts as a channel for nanowire field-effect transistor (NWFET) and biosensor. The biosensor has specific binding which is called functionalization that is achieved by attaching a variety of compounds on the designated sensing area. Reference electrodes and buffers are used as controllers. Top-down fabrication processes are preferred over bottom-up because they pave way for mass production. Different growth techniques are reviewed and discussed. Strengths and weaknesses of the FET and sensor are also reviewed.","PeriodicalId":377742,"journal":{"name":"Nanowires - Recent Progress","volume":"124 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ZnO Nanowire Field-Effect Transistor for Biosensing: A Review\",\"authors\":\"Nonofo Mathiba Jack Ditshego\",\"doi\":\"10.5772/intechopen.93707\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The last 19 years have seen intense research made on zinc oxide (ZnO) material, mainly due to the ability of converting the natural n-type material into p-type. For a long time, the p-type state was impossible to attain and maintain. This chapter focuses on ways of improving the doped ZnO material which acts as a channel for nanowire field-effect transistor (NWFET) and biosensor. The biosensor has specific binding which is called functionalization that is achieved by attaching a variety of compounds on the designated sensing area. Reference electrodes and buffers are used as controllers. Top-down fabrication processes are preferred over bottom-up because they pave way for mass production. Different growth techniques are reviewed and discussed. Strengths and weaknesses of the FET and sensor are also reviewed.\",\"PeriodicalId\":377742,\"journal\":{\"name\":\"Nanowires - Recent Progress\",\"volume\":\"124 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanowires - Recent Progress\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5772/intechopen.93707\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanowires - Recent Progress","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/intechopen.93707","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
ZnO Nanowire Field-Effect Transistor for Biosensing: A Review
The last 19 years have seen intense research made on zinc oxide (ZnO) material, mainly due to the ability of converting the natural n-type material into p-type. For a long time, the p-type state was impossible to attain and maintain. This chapter focuses on ways of improving the doped ZnO material which acts as a channel for nanowire field-effect transistor (NWFET) and biosensor. The biosensor has specific binding which is called functionalization that is achieved by attaching a variety of compounds on the designated sensing area. Reference electrodes and buffers are used as controllers. Top-down fabrication processes are preferred over bottom-up because they pave way for mass production. Different growth techniques are reviewed and discussed. Strengths and weaknesses of the FET and sensor are also reviewed.