{"title":"基于表格的28nm全贫硅绝缘体(FDSOI)模型","authors":"Abdelgader M. Abdalla, Jonathan Rodriguez","doi":"10.1109/SMACD.2016.7520746","DOIUrl":null,"url":null,"abstract":"In this work, a multivariate interpolation lookup tables (LUTs) model for nanometer CMOS transistors is presented. A novel lookup-table (LUT) method, which is based on a multivariate Neville's algorithm for the current-voltage (I-V) and Capacitance-voltage (C-V) characteristics of a transistor, is proposed for the simulation of MOS transistor circuits. The simulation speed is noted to be significantly enhanced with sufficient accuracy via a dynamic programming procedure with the implementation of the proposed approach compared to the current state of the art models. Simulation results are implemented in a 28-nm fully depleted SOI technology (FDSOI). Compared to simulations with both the BSIMSOI model and the Lagrange interpolation lookup table, the computation time of the proposed approach can be reduced by 8.X and beyond in transient analysis.","PeriodicalId":441203,"journal":{"name":"2016 13th International Conference on Synthesis, Modeling, Analysis and Simulation Methods and Applications to Circuit Design (SMACD)","volume":"105 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A new table based modelling of 28nm fully depleted silicon-on insulator (FDSOI)\",\"authors\":\"Abdelgader M. Abdalla, Jonathan Rodriguez\",\"doi\":\"10.1109/SMACD.2016.7520746\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, a multivariate interpolation lookup tables (LUTs) model for nanometer CMOS transistors is presented. A novel lookup-table (LUT) method, which is based on a multivariate Neville's algorithm for the current-voltage (I-V) and Capacitance-voltage (C-V) characteristics of a transistor, is proposed for the simulation of MOS transistor circuits. The simulation speed is noted to be significantly enhanced with sufficient accuracy via a dynamic programming procedure with the implementation of the proposed approach compared to the current state of the art models. Simulation results are implemented in a 28-nm fully depleted SOI technology (FDSOI). Compared to simulations with both the BSIMSOI model and the Lagrange interpolation lookup table, the computation time of the proposed approach can be reduced by 8.X and beyond in transient analysis.\",\"PeriodicalId\":441203,\"journal\":{\"name\":\"2016 13th International Conference on Synthesis, Modeling, Analysis and Simulation Methods and Applications to Circuit Design (SMACD)\",\"volume\":\"105 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 13th International Conference on Synthesis, Modeling, Analysis and Simulation Methods and Applications to Circuit Design (SMACD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SMACD.2016.7520746\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 13th International Conference on Synthesis, Modeling, Analysis and Simulation Methods and Applications to Circuit Design (SMACD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SMACD.2016.7520746","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A new table based modelling of 28nm fully depleted silicon-on insulator (FDSOI)
In this work, a multivariate interpolation lookup tables (LUTs) model for nanometer CMOS transistors is presented. A novel lookup-table (LUT) method, which is based on a multivariate Neville's algorithm for the current-voltage (I-V) and Capacitance-voltage (C-V) characteristics of a transistor, is proposed for the simulation of MOS transistor circuits. The simulation speed is noted to be significantly enhanced with sufficient accuracy via a dynamic programming procedure with the implementation of the proposed approach compared to the current state of the art models. Simulation results are implemented in a 28-nm fully depleted SOI technology (FDSOI). Compared to simulations with both the BSIMSOI model and the Lagrange interpolation lookup table, the computation time of the proposed approach can be reduced by 8.X and beyond in transient analysis.