二维邻域结构保持投影

Li Yiying, Gao Quanxue, Liu Yamin, L. Jingjing
{"title":"二维邻域结构保持投影","authors":"Li Yiying, Gao Quanxue, Liu Yamin, L. Jingjing","doi":"10.1109/CMSP.2011.40","DOIUrl":null,"url":null,"abstract":"This paper presents a novel manifold learning method, called two-dimensional neighborhood structure preserving projection (2DNSPP) for dimensionality reduction. 2DNSPP employs two adjacency graphs, namely diversity graph and similarity graph, with a vertex set and two affinity matrices. The affinity matrix of diversity graph characterizes the spatial diversity structure among nearby data, while affinity matrix of similarity graph characterizes the spatial similarity structure among nearby data. A concise feature extraction is then raised via combining the diversity and similarity among nearby data. Experiment results on the UMIST database indicate the efficiency of the proposed method.","PeriodicalId":309902,"journal":{"name":"2011 International Conference on Multimedia and Signal Processing","volume":"356 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Two-Dimensional Neighborhood Structure Preserving Projection\",\"authors\":\"Li Yiying, Gao Quanxue, Liu Yamin, L. Jingjing\",\"doi\":\"10.1109/CMSP.2011.40\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a novel manifold learning method, called two-dimensional neighborhood structure preserving projection (2DNSPP) for dimensionality reduction. 2DNSPP employs two adjacency graphs, namely diversity graph and similarity graph, with a vertex set and two affinity matrices. The affinity matrix of diversity graph characterizes the spatial diversity structure among nearby data, while affinity matrix of similarity graph characterizes the spatial similarity structure among nearby data. A concise feature extraction is then raised via combining the diversity and similarity among nearby data. Experiment results on the UMIST database indicate the efficiency of the proposed method.\",\"PeriodicalId\":309902,\"journal\":{\"name\":\"2011 International Conference on Multimedia and Signal Processing\",\"volume\":\"356 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 International Conference on Multimedia and Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CMSP.2011.40\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Multimedia and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CMSP.2011.40","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种新的流形学习方法——二维邻域保持投影(2DNSPP)降维算法。2DNSPP采用两个邻接图,即多样性图和相似图,具有一个顶点集和两个亲和矩阵。多样性图的亲和矩阵表征了邻近数据之间的空间多样性结构,相似图的亲和矩阵表征了邻近数据之间的空间相似性结构。然后结合附近数据的多样性和相似性,提出一种简洁的特征提取方法。在UMIST数据库上的实验结果表明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Two-Dimensional Neighborhood Structure Preserving Projection
This paper presents a novel manifold learning method, called two-dimensional neighborhood structure preserving projection (2DNSPP) for dimensionality reduction. 2DNSPP employs two adjacency graphs, namely diversity graph and similarity graph, with a vertex set and two affinity matrices. The affinity matrix of diversity graph characterizes the spatial diversity structure among nearby data, while affinity matrix of similarity graph characterizes the spatial similarity structure among nearby data. A concise feature extraction is then raised via combining the diversity and similarity among nearby data. Experiment results on the UMIST database indicate the efficiency of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信