使用机器学习技术的模拟电路自动设计

S. Devi, Gourav Tilwankar, R. Zele
{"title":"使用机器学习技术的模拟电路自动设计","authors":"S. Devi, Gourav Tilwankar, R. Zele","doi":"10.1109/VDAT53777.2021.9601131","DOIUrl":null,"url":null,"abstract":"This work presents methodology for an automated design of analog circuits using global Artificial Neural Network (ANN) for an optimised dataset. The optimised dataset is generated using simulation based gm/Id technique, which reduces the dataset size and also the time required for data collection and analysis. Automated analog circuit design is implemented using ANN based supervised learning technique for a common source amplifier and a two stage single-ended opamp. The results obtained are compared with unsupervised (Reinforcement Learning algorithm) and supervised learning technique (Genetic Algorithm based local ANN). The comparison results shows that the proposed gm/Id technique based ANN model gives a better accuracy in terms of score and mean square error (MSE).","PeriodicalId":122393,"journal":{"name":"2021 25th International Symposium on VLSI Design and Test (VDAT)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Automated Design of Analog Circuits using Machine Learning Techniques\",\"authors\":\"S. Devi, Gourav Tilwankar, R. Zele\",\"doi\":\"10.1109/VDAT53777.2021.9601131\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work presents methodology for an automated design of analog circuits using global Artificial Neural Network (ANN) for an optimised dataset. The optimised dataset is generated using simulation based gm/Id technique, which reduces the dataset size and also the time required for data collection and analysis. Automated analog circuit design is implemented using ANN based supervised learning technique for a common source amplifier and a two stage single-ended opamp. The results obtained are compared with unsupervised (Reinforcement Learning algorithm) and supervised learning technique (Genetic Algorithm based local ANN). The comparison results shows that the proposed gm/Id technique based ANN model gives a better accuracy in terms of score and mean square error (MSE).\",\"PeriodicalId\":122393,\"journal\":{\"name\":\"2021 25th International Symposium on VLSI Design and Test (VDAT)\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 25th International Symposium on VLSI Design and Test (VDAT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VDAT53777.2021.9601131\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 25th International Symposium on VLSI Design and Test (VDAT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VDAT53777.2021.9601131","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

这项工作提出了使用全局人工神经网络(ANN)进行优化数据集的模拟电路自动设计的方法。优化的数据集是使用基于模拟的gm/Id技术生成的,这减少了数据集的大小,也减少了数据收集和分析所需的时间。采用基于人工神经网络的监督学习技术,实现了共源放大器和两级单端运放的自动化模拟电路设计。将所得结果与无监督学习(强化学习算法)和监督学习(基于遗传算法的局部神经网络)进行了比较。对比结果表明,基于gm/Id技术的人工神经网络模型在得分和均方误差(MSE)方面具有更好的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automated Design of Analog Circuits using Machine Learning Techniques
This work presents methodology for an automated design of analog circuits using global Artificial Neural Network (ANN) for an optimised dataset. The optimised dataset is generated using simulation based gm/Id technique, which reduces the dataset size and also the time required for data collection and analysis. Automated analog circuit design is implemented using ANN based supervised learning technique for a common source amplifier and a two stage single-ended opamp. The results obtained are compared with unsupervised (Reinforcement Learning algorithm) and supervised learning technique (Genetic Algorithm based local ANN). The comparison results shows that the proposed gm/Id technique based ANN model gives a better accuracy in terms of score and mean square error (MSE).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信