T. Grudniewski, J. Parka, R. Dabrowski, A. Januszko, A. Miniewicz
{"title":"低频交流电压下染料掺杂LC电池的衍射效率","authors":"T. Grudniewski, J. Parka, R. Dabrowski, A. Januszko, A. Miniewicz","doi":"10.1117/12.472164","DOIUrl":null,"url":null,"abstract":"In this paper relation between the diffraction efficiency in LC dye doped cell in two wave mixing system and the applied voltage parameters had been described. The goal of this work was increase of diffraction efficiency using low frequency AC voltage. The LC cells used in the experiments were filled with pure and dye-doped liquid crystal mixtures. In this system we obtained diffraction efficiency increasing about five to eight times.","PeriodicalId":132866,"journal":{"name":"Liquid crystals (Print)","volume":"90 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Diffraction efficiency in dye-doped LC cells under low-frequency AC voltage\",\"authors\":\"T. Grudniewski, J. Parka, R. Dabrowski, A. Januszko, A. Miniewicz\",\"doi\":\"10.1117/12.472164\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper relation between the diffraction efficiency in LC dye doped cell in two wave mixing system and the applied voltage parameters had been described. The goal of this work was increase of diffraction efficiency using low frequency AC voltage. The LC cells used in the experiments were filled with pure and dye-doped liquid crystal mixtures. In this system we obtained diffraction efficiency increasing about five to eight times.\",\"PeriodicalId\":132866,\"journal\":{\"name\":\"Liquid crystals (Print)\",\"volume\":\"90 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Liquid crystals (Print)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.472164\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Liquid crystals (Print)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.472164","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Diffraction efficiency in dye-doped LC cells under low-frequency AC voltage
In this paper relation between the diffraction efficiency in LC dye doped cell in two wave mixing system and the applied voltage parameters had been described. The goal of this work was increase of diffraction efficiency using low frequency AC voltage. The LC cells used in the experiments were filled with pure and dye-doped liquid crystal mixtures. In this system we obtained diffraction efficiency increasing about five to eight times.