基于SVM和D-S理论的垃圾邮件过滤技术

Miao Ye, Qiuxiang Jiang, F. Mai
{"title":"基于SVM和D-S理论的垃圾邮件过滤技术","authors":"Miao Ye, Qiuxiang Jiang, F. Mai","doi":"10.1109/WKDD.2008.42","DOIUrl":null,"url":null,"abstract":"The development of spam techniques and rapid increase of spam amount poses a severe challenge to anti-spam technologies. Given the limitation of classification based on mail body textual content, this paper focuses on designing the spam discrimination model based on SVM and D-S theory, which uses SVM with probability to classify e-mail, according to the features of mail headers and mail body respectively, and uses D-S Theory to judge the combination result. Experimental result indicates that the proposed model can improve the accuracy of spam identification.","PeriodicalId":101656,"journal":{"name":"First International Workshop on Knowledge Discovery and Data Mining (WKDD 2008)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"The Spam Filtering Technology Based on SVM and D-S Theory\",\"authors\":\"Miao Ye, Qiuxiang Jiang, F. Mai\",\"doi\":\"10.1109/WKDD.2008.42\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The development of spam techniques and rapid increase of spam amount poses a severe challenge to anti-spam technologies. Given the limitation of classification based on mail body textual content, this paper focuses on designing the spam discrimination model based on SVM and D-S theory, which uses SVM with probability to classify e-mail, according to the features of mail headers and mail body respectively, and uses D-S Theory to judge the combination result. Experimental result indicates that the proposed model can improve the accuracy of spam identification.\",\"PeriodicalId\":101656,\"journal\":{\"name\":\"First International Workshop on Knowledge Discovery and Data Mining (WKDD 2008)\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"First International Workshop on Knowledge Discovery and Data Mining (WKDD 2008)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WKDD.2008.42\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"First International Workshop on Knowledge Discovery and Data Mining (WKDD 2008)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WKDD.2008.42","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

随着垃圾邮件技术的发展和垃圾邮件数量的迅速增加,对垃圾邮件处理技术提出了严峻的挑战。针对基于邮件正文文本内容分类的局限性,本文重点设计了基于SVM和D-S理论的垃圾邮件识别模型,根据邮件标题和邮件正文的特征,分别使用SVM带概率对邮件进行分类,并使用D-S理论对组合结果进行判断。实验结果表明,该模型可以提高垃圾邮件识别的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Spam Filtering Technology Based on SVM and D-S Theory
The development of spam techniques and rapid increase of spam amount poses a severe challenge to anti-spam technologies. Given the limitation of classification based on mail body textual content, this paper focuses on designing the spam discrimination model based on SVM and D-S theory, which uses SVM with probability to classify e-mail, according to the features of mail headers and mail body respectively, and uses D-S Theory to judge the combination result. Experimental result indicates that the proposed model can improve the accuracy of spam identification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信