基于忆阻器的可编程超高效机器学习推理加速器的FPGA演示

M. Foltin, G. Aguiar, Rodrigo Antunes, P. Silveira, Gustavo Knuppe, J. Ambrosi, Soumitra Chatterjee, J. Kolhe, Sunil Lakshiminarashimha, D. Milojicic, J. Strachan, C. Warner, Amit Sharma, Eddie Lee, S. R. Chalamalasetti, C. Brueggen, Charles Williams, Nathaniel Jansen, Felipe Saenz, Luis Federico Li
{"title":"基于忆阻器的可编程超高效机器学习推理加速器的FPGA演示","authors":"M. Foltin, G. Aguiar, Rodrigo Antunes, P. Silveira, Gustavo Knuppe, J. Ambrosi, Soumitra Chatterjee, J. Kolhe, Sunil Lakshiminarashimha, D. Milojicic, J. Strachan, C. Warner, Amit Sharma, Eddie Lee, S. R. Chalamalasetti, C. Brueggen, Charles Williams, Nathaniel Jansen, Felipe Saenz, Luis Federico Li","doi":"10.1109/ICRC.2019.8914705","DOIUrl":null,"url":null,"abstract":"Hybrid analog-digital neuromorphic accelerators show promise for significant increase in performance per watt of deep learning inference and training as compared with conventional technologies. In this work we present an FPGA demonstrator of a programmable hybrid inferencing accelerator, with memristor analog dot product engines emulated by digital matrix-vector multiplication units employing FPGA SRAM memory for in-situ weight storage. The full-chip demonstrator interfaced to a host by PCIe interface serves as a software development platform and a vehicle for further hardware microarchitecture improvements. Implementation of compute cores, tiles, network on a chip, and the host interface is discussed. New pipelining scheme is introduced to achieve high utilization of matrix-vector multiplication units while reducing tile data memory size requirements for neural network layer activations. The data flow orchestration between the tiles is described, controlled by a RISC-V core. Inferencing accuracy analysis is presented for an example RNN and CNN models. The demonstrator is instrumented with hardware monitors to enable performance measurements and tuning. Performance projections for future memristor-based ASIC are also discussed.","PeriodicalId":297574,"journal":{"name":"2019 IEEE International Conference on Rebooting Computing (ICRC)","volume":"84 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"FPGA Demonstrator of a Programmable Ultra-Efficient Memristor-Based Machine Learning Inference Accelerator\",\"authors\":\"M. Foltin, G. Aguiar, Rodrigo Antunes, P. Silveira, Gustavo Knuppe, J. Ambrosi, Soumitra Chatterjee, J. Kolhe, Sunil Lakshiminarashimha, D. Milojicic, J. Strachan, C. Warner, Amit Sharma, Eddie Lee, S. R. Chalamalasetti, C. Brueggen, Charles Williams, Nathaniel Jansen, Felipe Saenz, Luis Federico Li\",\"doi\":\"10.1109/ICRC.2019.8914705\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hybrid analog-digital neuromorphic accelerators show promise for significant increase in performance per watt of deep learning inference and training as compared with conventional technologies. In this work we present an FPGA demonstrator of a programmable hybrid inferencing accelerator, with memristor analog dot product engines emulated by digital matrix-vector multiplication units employing FPGA SRAM memory for in-situ weight storage. The full-chip demonstrator interfaced to a host by PCIe interface serves as a software development platform and a vehicle for further hardware microarchitecture improvements. Implementation of compute cores, tiles, network on a chip, and the host interface is discussed. New pipelining scheme is introduced to achieve high utilization of matrix-vector multiplication units while reducing tile data memory size requirements for neural network layer activations. The data flow orchestration between the tiles is described, controlled by a RISC-V core. Inferencing accuracy analysis is presented for an example RNN and CNN models. The demonstrator is instrumented with hardware monitors to enable performance measurements and tuning. Performance projections for future memristor-based ASIC are also discussed.\",\"PeriodicalId\":297574,\"journal\":{\"name\":\"2019 IEEE International Conference on Rebooting Computing (ICRC)\",\"volume\":\"84 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE International Conference on Rebooting Computing (ICRC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICRC.2019.8914705\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Rebooting Computing (ICRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRC.2019.8914705","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

与传统技术相比,混合模拟-数字神经形态加速器有望显著提高每瓦深度学习推理和训练的性能。在这项工作中,我们提出了一个可编程混合推理加速器的FPGA演示器,其忆阻器模拟点积引擎由数字矩阵向量乘法单元模拟,采用FPGA SRAM存储器进行原位权重存储。全芯片演示器通过PCIe接口连接到主机,作为软件开发平台和硬件微架构进一步改进的载体。讨论了计算核心、块、片上网络和主机接口的实现。为了提高矩阵-向量乘法单元的利用率,同时降低神经网络层激活对数据内存的要求,引入了新的流水线方案。描述了由RISC-V核心控制的块之间的数据流编排。给出了RNN和CNN模型的推理精度分析实例。演示器配备了硬件监视器,以实现性能测量和调优。对未来基于忆阻器的ASIC的性能预测也进行了讨论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
FPGA Demonstrator of a Programmable Ultra-Efficient Memristor-Based Machine Learning Inference Accelerator
Hybrid analog-digital neuromorphic accelerators show promise for significant increase in performance per watt of deep learning inference and training as compared with conventional technologies. In this work we present an FPGA demonstrator of a programmable hybrid inferencing accelerator, with memristor analog dot product engines emulated by digital matrix-vector multiplication units employing FPGA SRAM memory for in-situ weight storage. The full-chip demonstrator interfaced to a host by PCIe interface serves as a software development platform and a vehicle for further hardware microarchitecture improvements. Implementation of compute cores, tiles, network on a chip, and the host interface is discussed. New pipelining scheme is introduced to achieve high utilization of matrix-vector multiplication units while reducing tile data memory size requirements for neural network layer activations. The data flow orchestration between the tiles is described, controlled by a RISC-V core. Inferencing accuracy analysis is presented for an example RNN and CNN models. The demonstrator is instrumented with hardware monitors to enable performance measurements and tuning. Performance projections for future memristor-based ASIC are also discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信