基于GoogLeNet和VGG的植物叶片脉络分类

P. Jasitha, M. Dileep, M. Divya
{"title":"基于GoogLeNet和VGG的植物叶片脉络分类","authors":"P. Jasitha, M. Dileep, M. Divya","doi":"10.1109/RTEICT46194.2019.9016966","DOIUrl":null,"url":null,"abstract":"Plants maintain and protect life on earth by perpetuating various seasons and supplying air, food, shade, and shelter. Identification and classification of plants are inevitable for botanists, ayurvedic physicians, ayurvedic medicine manufacturers, and researchers. In this paper, we propose a fine- tuned GoogLeNet CNN model for classification of plants using leaf venation. GoogLeNet and VGG-16 CNN models are trained and tested with Dleaf, Flavia and Leaf1 datasets using CNN and Sopport Vector Machine (SVM) classifier. Fine-tuned GoogLeNet outperforms fine-tuned VGG-16 and Dleaf deep CNN model with a five-fold cross-validation accuracy of 99.2% on Leaf1 dataset using SVM classifier.","PeriodicalId":269385,"journal":{"name":"2019 4th International Conference on Recent Trends on Electronics, Information, Communication & Technology (RTEICT)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Venation Based Plant Leaves Classification Using GoogLeNet and VGG\",\"authors\":\"P. Jasitha, M. Dileep, M. Divya\",\"doi\":\"10.1109/RTEICT46194.2019.9016966\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Plants maintain and protect life on earth by perpetuating various seasons and supplying air, food, shade, and shelter. Identification and classification of plants are inevitable for botanists, ayurvedic physicians, ayurvedic medicine manufacturers, and researchers. In this paper, we propose a fine- tuned GoogLeNet CNN model for classification of plants using leaf venation. GoogLeNet and VGG-16 CNN models are trained and tested with Dleaf, Flavia and Leaf1 datasets using CNN and Sopport Vector Machine (SVM) classifier. Fine-tuned GoogLeNet outperforms fine-tuned VGG-16 and Dleaf deep CNN model with a five-fold cross-validation accuracy of 99.2% on Leaf1 dataset using SVM classifier.\",\"PeriodicalId\":269385,\"journal\":{\"name\":\"2019 4th International Conference on Recent Trends on Electronics, Information, Communication & Technology (RTEICT)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 4th International Conference on Recent Trends on Electronics, Information, Communication & Technology (RTEICT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RTEICT46194.2019.9016966\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 4th International Conference on Recent Trends on Electronics, Information, Communication & Technology (RTEICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RTEICT46194.2019.9016966","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

植物维持和保护地球上的生命,维持不同的季节,提供空气、食物、荫凉和住所。对植物学家、阿育吠陀医生、阿育吠陀药物制造商和研究人员来说,植物的鉴定和分类是不可避免的。在本文中,我们提出了一个微调的GoogLeNet CNN模型,用于利用叶片脉络进行植物分类。使用CNN和Sopport向量机(SVM)分类器,使用leaf、Flavia和Leaf1数据集对GoogLeNet和VGG-16 CNN模型进行训练和测试。优化后的GoogLeNet在Leaf1数据集上使用SVM分类器交叉验证准确率达到99.2%,优于优化后的VGG-16和leaf深度CNN模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Venation Based Plant Leaves Classification Using GoogLeNet and VGG
Plants maintain and protect life on earth by perpetuating various seasons and supplying air, food, shade, and shelter. Identification and classification of plants are inevitable for botanists, ayurvedic physicians, ayurvedic medicine manufacturers, and researchers. In this paper, we propose a fine- tuned GoogLeNet CNN model for classification of plants using leaf venation. GoogLeNet and VGG-16 CNN models are trained and tested with Dleaf, Flavia and Leaf1 datasets using CNN and Sopport Vector Machine (SVM) classifier. Fine-tuned GoogLeNet outperforms fine-tuned VGG-16 and Dleaf deep CNN model with a five-fold cross-validation accuracy of 99.2% on Leaf1 dataset using SVM classifier.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信