具有细颗粒保护的弹性分组路由光网络

H. Hasegawa, Y. Mori, Ken-ichi Sato
{"title":"具有细颗粒保护的弹性分组路由光网络","authors":"H. Hasegawa, Y. Mori, Ken-ichi Sato","doi":"10.1109/ONDM.2015.7127287","DOIUrl":null,"url":null,"abstract":"A novel resilient optical routing network architecture that adopts finely granular protection and finely granular add/drop is presented. The routing scheme defines optical pipes such that multiple optical paths can be carried by each pipe and can be dropped or added at any node on the route of a pipe. The routing scheme also makes it possible to enhance frequency utilization within pipes as we recently verified. We develop a static network design algorithm that establishes coarse granular optical pipes so that working and backup optical paths are efficiently carried by these pipes. Numerical experiments elucidate that the number of fibers in a network can be reduced up to 20% for 400Gbps channels without any modification of hardware.","PeriodicalId":282743,"journal":{"name":"2015 International Conference on Optical Network Design and Modeling (ONDM)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Resilient grouped routing optical networks with finely granular protection\",\"authors\":\"H. Hasegawa, Y. Mori, Ken-ichi Sato\",\"doi\":\"10.1109/ONDM.2015.7127287\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A novel resilient optical routing network architecture that adopts finely granular protection and finely granular add/drop is presented. The routing scheme defines optical pipes such that multiple optical paths can be carried by each pipe and can be dropped or added at any node on the route of a pipe. The routing scheme also makes it possible to enhance frequency utilization within pipes as we recently verified. We develop a static network design algorithm that establishes coarse granular optical pipes so that working and backup optical paths are efficiently carried by these pipes. Numerical experiments elucidate that the number of fibers in a network can be reduced up to 20% for 400Gbps channels without any modification of hardware.\",\"PeriodicalId\":282743,\"journal\":{\"name\":\"2015 International Conference on Optical Network Design and Modeling (ONDM)\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 International Conference on Optical Network Design and Modeling (ONDM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ONDM.2015.7127287\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Optical Network Design and Modeling (ONDM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ONDM.2015.7127287","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

提出了一种采用细粒度保护和细粒度添加/丢弃的弹性光路由网络结构。路由方案定义了光管道,使得每根管道可以承载多条光路,并且可以在管道路由的任何节点上删除或添加光路。正如我们最近验证的那样,路由方案还可以提高管道内的频率利用率。我们开发了一种静态网络设计算法,该算法建立了粗粒度光管道,使这些管道有效地承载工作光路和备份光路。数值实验表明,在不修改硬件的情况下,400Gbps信道的光纤数量可以减少20%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Resilient grouped routing optical networks with finely granular protection
A novel resilient optical routing network architecture that adopts finely granular protection and finely granular add/drop is presented. The routing scheme defines optical pipes such that multiple optical paths can be carried by each pipe and can be dropped or added at any node on the route of a pipe. The routing scheme also makes it possible to enhance frequency utilization within pipes as we recently verified. We develop a static network design algorithm that establishes coarse granular optical pipes so that working and backup optical paths are efficiently carried by these pipes. Numerical experiments elucidate that the number of fibers in a network can be reduced up to 20% for 400Gbps channels without any modification of hardware.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信