{"title":"节能WiFi显示屏","authors":"Chi Zhang, Xinyu Zhang, Ranveer Chandra","doi":"10.1145/2742647.2742654","DOIUrl":null,"url":null,"abstract":"WiFi Display, also called Miracast, is an emerging technology that allows a mobile device (source) to duplicate its screen content to an external display (sink) via a peer-to-peer WiFi link. Despite its diverse application scenarios and growing popularity, Miracast consumes substantial power due to a combination of video encoding/decoding and transmission. In this paper, we first conduct a measurement study to quantify and model key parameters that scale Miracast's power consumption. We then propose a set of optimization mechanisms to bypass redundant codec operations, reduce video tail traffic, and relocate the Miracast channel dynamically to maximize transmission efficiency. We have implemented this energy-efficient Miracast framework on an Android smartphone. Experimental results show that the legacy Miracast system costs 1.3 to 2.4 Watts. Our framework reduces the power consumption by 29% to 61%, depending on the Miracast application's video traffic patterns. Our optimization mechanisms do not affect the video quality, and can even reduce the latency of certain Miracast applications.","PeriodicalId":191203,"journal":{"name":"Proceedings of the 13th Annual International Conference on Mobile Systems, Applications, and Services","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Energy Efficient WiFi Display\",\"authors\":\"Chi Zhang, Xinyu Zhang, Ranveer Chandra\",\"doi\":\"10.1145/2742647.2742654\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"WiFi Display, also called Miracast, is an emerging technology that allows a mobile device (source) to duplicate its screen content to an external display (sink) via a peer-to-peer WiFi link. Despite its diverse application scenarios and growing popularity, Miracast consumes substantial power due to a combination of video encoding/decoding and transmission. In this paper, we first conduct a measurement study to quantify and model key parameters that scale Miracast's power consumption. We then propose a set of optimization mechanisms to bypass redundant codec operations, reduce video tail traffic, and relocate the Miracast channel dynamically to maximize transmission efficiency. We have implemented this energy-efficient Miracast framework on an Android smartphone. Experimental results show that the legacy Miracast system costs 1.3 to 2.4 Watts. Our framework reduces the power consumption by 29% to 61%, depending on the Miracast application's video traffic patterns. Our optimization mechanisms do not affect the video quality, and can even reduce the latency of certain Miracast applications.\",\"PeriodicalId\":191203,\"journal\":{\"name\":\"Proceedings of the 13th Annual International Conference on Mobile Systems, Applications, and Services\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 13th Annual International Conference on Mobile Systems, Applications, and Services\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2742647.2742654\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 13th Annual International Conference on Mobile Systems, Applications, and Services","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2742647.2742654","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
WiFi Display, also called Miracast, is an emerging technology that allows a mobile device (source) to duplicate its screen content to an external display (sink) via a peer-to-peer WiFi link. Despite its diverse application scenarios and growing popularity, Miracast consumes substantial power due to a combination of video encoding/decoding and transmission. In this paper, we first conduct a measurement study to quantify and model key parameters that scale Miracast's power consumption. We then propose a set of optimization mechanisms to bypass redundant codec operations, reduce video tail traffic, and relocate the Miracast channel dynamically to maximize transmission efficiency. We have implemented this energy-efficient Miracast framework on an Android smartphone. Experimental results show that the legacy Miracast system costs 1.3 to 2.4 Watts. Our framework reduces the power consumption by 29% to 61%, depending on the Miracast application's video traffic patterns. Our optimization mechanisms do not affect the video quality, and can even reduce the latency of certain Miracast applications.