MPME-DP:基于dirichlet过程的多种群矩估计,用于模拟/混合信号电路的有效验证

M. Zaheer, Xin Li, Chenjie Gu
{"title":"MPME-DP:基于dirichlet过程的多种群矩估计,用于模拟/混合信号电路的有效验证","authors":"M. Zaheer, Xin Li, Chenjie Gu","doi":"10.1109/ICCAD.2014.7001369","DOIUrl":null,"url":null,"abstract":"Moment estimation is one of the most important tasks to appropriately characterize the performance variability of today's nanoscale integrated circuits. In this paper, we propose an efficient algorithm of multi-population moment estimation via Dirichlet Process (MPME-DP) for validation of analog and mixed-signal circuits with extremely small sample size. The key idea is to partition all populations (e.g., different environmental conditions, setup configurations, etc.) into groups. The populations within the same group are similar and their common knowledge can be extracted to improve the accuracy of moment estimation. As will be demonstrated by the silicon measurement data of a high-speed I/O link, MPME-DP reduces the moment estimation error by up to 65% compared to other conventional estimators.","PeriodicalId":426584,"journal":{"name":"2014 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MPME-DP: Multi-population moment estimation via dirichlet process for efficient validation of analog/mixed-signal circuits\",\"authors\":\"M. Zaheer, Xin Li, Chenjie Gu\",\"doi\":\"10.1109/ICCAD.2014.7001369\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Moment estimation is one of the most important tasks to appropriately characterize the performance variability of today's nanoscale integrated circuits. In this paper, we propose an efficient algorithm of multi-population moment estimation via Dirichlet Process (MPME-DP) for validation of analog and mixed-signal circuits with extremely small sample size. The key idea is to partition all populations (e.g., different environmental conditions, setup configurations, etc.) into groups. The populations within the same group are similar and their common knowledge can be extracted to improve the accuracy of moment estimation. As will be demonstrated by the silicon measurement data of a high-speed I/O link, MPME-DP reduces the moment estimation error by up to 65% compared to other conventional estimators.\",\"PeriodicalId\":426584,\"journal\":{\"name\":\"2014 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCAD.2014.7001369\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCAD.2014.7001369","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

矩估计是表征当前纳米级集成电路性能变异性的最重要任务之一。本文提出了一种基于Dirichlet过程(MPME-DP)的多总体矩估计算法,用于极小样本量的模拟和混合信号电路的验证。关键思想是将所有种群(例如,不同的环境条件,设置配置等)划分为组。同一组内的总体是相似的,可以提取它们的共同知识来提高矩估计的精度。正如高速I/O链路的硅测量数据所证明的那样,与其他传统估计器相比,MPME-DP将力矩估计误差降低了65%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MPME-DP: Multi-population moment estimation via dirichlet process for efficient validation of analog/mixed-signal circuits
Moment estimation is one of the most important tasks to appropriately characterize the performance variability of today's nanoscale integrated circuits. In this paper, we propose an efficient algorithm of multi-population moment estimation via Dirichlet Process (MPME-DP) for validation of analog and mixed-signal circuits with extremely small sample size. The key idea is to partition all populations (e.g., different environmental conditions, setup configurations, etc.) into groups. The populations within the same group are similar and their common knowledge can be extracted to improve the accuracy of moment estimation. As will be demonstrated by the silicon measurement data of a high-speed I/O link, MPME-DP reduces the moment estimation error by up to 65% compared to other conventional estimators.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信