用封闭离散法设计IIR数字分数阶差分积分器

R. El-Khazali
{"title":"用封闭离散法设计IIR数字分数阶差分积分器","authors":"R. El-Khazali","doi":"10.1109/MWSCAS.2015.7282152","DOIUrl":null,"url":null,"abstract":"This paper introduces a new design method of fractional-order IIR digital differentiators (FODD) and integrators (FODI) using a closed-form discretization technique. Unlike the direct or the indirect discretization methods that uses CFE to generate a digital differential or integral operators, which sometimes yield an unstable non-minimum phase digital filter, the proposed approach always yields a minimum phase stable rational z-transfer functions for both FODDs and FODIs. The significance of the proposed method lies in the simplicity of the design, which only depends on the fractional-order differentiator or the integrator. The main points of this work are illustrated via numerical examples.","PeriodicalId":216613,"journal":{"name":"2015 IEEE 58th International Midwest Symposium on Circuits and Systems (MWSCAS)","volume":"99 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Design of IIR digital fractional-order differ-integrators using closed-form discretization\",\"authors\":\"R. El-Khazali\",\"doi\":\"10.1109/MWSCAS.2015.7282152\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces a new design method of fractional-order IIR digital differentiators (FODD) and integrators (FODI) using a closed-form discretization technique. Unlike the direct or the indirect discretization methods that uses CFE to generate a digital differential or integral operators, which sometimes yield an unstable non-minimum phase digital filter, the proposed approach always yields a minimum phase stable rational z-transfer functions for both FODDs and FODIs. The significance of the proposed method lies in the simplicity of the design, which only depends on the fractional-order differentiator or the integrator. The main points of this work are illustrated via numerical examples.\",\"PeriodicalId\":216613,\"journal\":{\"name\":\"2015 IEEE 58th International Midwest Symposium on Circuits and Systems (MWSCAS)\",\"volume\":\"99 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE 58th International Midwest Symposium on Circuits and Systems (MWSCAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MWSCAS.2015.7282152\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 58th International Midwest Symposium on Circuits and Systems (MWSCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MWSCAS.2015.7282152","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

介绍了一种利用封闭离散化技术设计分数阶IIR数字微分器和积分器的新方法。与使用CFE生成数字微分或积分算子的直接或间接离散化方法不同,这些方法有时会产生不稳定的非最小相位数字滤波器,所提出的方法总是为fodd和fodi产生最小相位稳定的有理z传递函数。该方法的意义在于设计简单,仅依赖于分数阶微分器或积分器。通过数值算例说明了本文的主要观点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Design of IIR digital fractional-order differ-integrators using closed-form discretization
This paper introduces a new design method of fractional-order IIR digital differentiators (FODD) and integrators (FODI) using a closed-form discretization technique. Unlike the direct or the indirect discretization methods that uses CFE to generate a digital differential or integral operators, which sometimes yield an unstable non-minimum phase digital filter, the proposed approach always yields a minimum phase stable rational z-transfer functions for both FODDs and FODIs. The significance of the proposed method lies in the simplicity of the design, which only depends on the fractional-order differentiator or the integrator. The main points of this work are illustrated via numerical examples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信