OLT:一个用于机器人RGB-D数据集的对象标记工具包

J. Ruiz-Sarmiento, C. Galindo, Javier González
{"title":"OLT:一个用于机器人RGB-D数据集的对象标记工具包","authors":"J. Ruiz-Sarmiento, C. Galindo, Javier González","doi":"10.1109/ECMR.2015.7324214","DOIUrl":null,"url":null,"abstract":"In this work we present the Object Labeling Toolkit (OLT), a set of software components publicly available for helping in the management and labeling of sequential RGB-D observations collected by a mobile robot. Such a robot can be equipped with an arbitrary number of RGB-D devices, possibly integrating other sensors (e.g. odometry, 2D laser scanners, etc.). OLT first merges the robot observations to generate a 3D reconstruction of the scene from which object segmentation and labeling is conveniently accomplished. The annotated labels are automatically propagated by the toolkit to each RGB-D observation in the collected sequence, providing a dense labeling of both intensity and depth images. The resulting objects' labels can be exploited for many robotic oriented applications, including high-level decision making, semantic mapping, or contextual object recognition. Software components within OLT are highly customizable and expandable, facilitating the integration of already-developed algorithms. To illustrate the toolkit suitability, we describe its application to robotic RGB-D sequences taken in a home environment.","PeriodicalId":142754,"journal":{"name":"2015 European Conference on Mobile Robots (ECMR)","volume":"99 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"OLT: A Toolkit for Object Labeling applied to robotic RGB-D datasets\",\"authors\":\"J. Ruiz-Sarmiento, C. Galindo, Javier González\",\"doi\":\"10.1109/ECMR.2015.7324214\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work we present the Object Labeling Toolkit (OLT), a set of software components publicly available for helping in the management and labeling of sequential RGB-D observations collected by a mobile robot. Such a robot can be equipped with an arbitrary number of RGB-D devices, possibly integrating other sensors (e.g. odometry, 2D laser scanners, etc.). OLT first merges the robot observations to generate a 3D reconstruction of the scene from which object segmentation and labeling is conveniently accomplished. The annotated labels are automatically propagated by the toolkit to each RGB-D observation in the collected sequence, providing a dense labeling of both intensity and depth images. The resulting objects' labels can be exploited for many robotic oriented applications, including high-level decision making, semantic mapping, or contextual object recognition. Software components within OLT are highly customizable and expandable, facilitating the integration of already-developed algorithms. To illustrate the toolkit suitability, we describe its application to robotic RGB-D sequences taken in a home environment.\",\"PeriodicalId\":142754,\"journal\":{\"name\":\"2015 European Conference on Mobile Robots (ECMR)\",\"volume\":\"99 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 European Conference on Mobile Robots (ECMR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ECMR.2015.7324214\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 European Conference on Mobile Robots (ECMR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECMR.2015.7324214","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

在这项工作中,我们提出了对象标记工具包(OLT),这是一组公开的软件组件,可用于帮助管理和标记由移动机器人收集的连续RGB-D观察结果。这样的机器人可以配备任意数量的RGB-D设备,可能集成其他传感器(例如里程计,2D激光扫描仪等)。OLT首先合并机器人的观察结果,生成场景的3D重建,从而方便地完成对象分割和标记。该工具包将标注的标签自动传播到收集序列中的每个RGB-D观测值,从而提供强度和深度图像的密集标记。结果对象的标签可以用于许多面向机器人的应用程序,包括高级决策制定、语义映射或上下文对象识别。OLT中的软件组件是高度可定制和可扩展的,促进了已经开发的算法的集成。为了说明工具包的适用性,我们描述了它在家庭环境中采取的机器人RGB-D序列中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
OLT: A Toolkit for Object Labeling applied to robotic RGB-D datasets
In this work we present the Object Labeling Toolkit (OLT), a set of software components publicly available for helping in the management and labeling of sequential RGB-D observations collected by a mobile robot. Such a robot can be equipped with an arbitrary number of RGB-D devices, possibly integrating other sensors (e.g. odometry, 2D laser scanners, etc.). OLT first merges the robot observations to generate a 3D reconstruction of the scene from which object segmentation and labeling is conveniently accomplished. The annotated labels are automatically propagated by the toolkit to each RGB-D observation in the collected sequence, providing a dense labeling of both intensity and depth images. The resulting objects' labels can be exploited for many robotic oriented applications, including high-level decision making, semantic mapping, or contextual object recognition. Software components within OLT are highly customizable and expandable, facilitating the integration of already-developed algorithms. To illustrate the toolkit suitability, we describe its application to robotic RGB-D sequences taken in a home environment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信