基于神经网络的机器人动力学辨识应用于神经模糊控制器

K. Kumbla, M. Jamshidi
{"title":"基于神经网络的机器人动力学辨识应用于神经模糊控制器","authors":"K. Kumbla, M. Jamshidi","doi":"10.1109/ROBOT.1997.614286","DOIUrl":null,"url":null,"abstract":"A technique of identifying the dynamics of a robotics system using neural network is presented. The identified model is used by a fuzzy controller to evaluate the range of the control variables and also the performance of the adaptive control laws on the identified model. An overview of the neuro-fuzzy control architecture is also discussed. This architecture uses two neural networks, one which identifies the system dynamics and another classifies the temporal response of the robotic system. The information from the neural networks is used to make suitable adjustments in the parameter of the fuzzy controller. This paper however concentrates on the theory and operation of identifying the dynamics of a Adept-Two industrial robot. Simulation results are presented.","PeriodicalId":225473,"journal":{"name":"Proceedings of International Conference on Robotics and Automation","volume":"153 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Neural network based identification of robot dynamics used for neuro-fuzzy controller\",\"authors\":\"K. Kumbla, M. Jamshidi\",\"doi\":\"10.1109/ROBOT.1997.614286\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A technique of identifying the dynamics of a robotics system using neural network is presented. The identified model is used by a fuzzy controller to evaluate the range of the control variables and also the performance of the adaptive control laws on the identified model. An overview of the neuro-fuzzy control architecture is also discussed. This architecture uses two neural networks, one which identifies the system dynamics and another classifies the temporal response of the robotic system. The information from the neural networks is used to make suitable adjustments in the parameter of the fuzzy controller. This paper however concentrates on the theory and operation of identifying the dynamics of a Adept-Two industrial robot. Simulation results are presented.\",\"PeriodicalId\":225473,\"journal\":{\"name\":\"Proceedings of International Conference on Robotics and Automation\",\"volume\":\"153 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1997-04-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of International Conference on Robotics and Automation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ROBOT.1997.614286\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of International Conference on Robotics and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROBOT.1997.614286","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

提出了一种利用神经网络识别机器人系统动力学特性的方法。模糊控制器利用辨识出的模型来评估控制变量的取值范围以及自适应控制律对辨识出的模型的性能。本文还对神经模糊控制体系结构进行了概述。该体系结构使用两个神经网络,一个用于识别系统动力学,另一个用于分类机器人系统的时间响应。利用神经网络的信息对模糊控制器的参数进行适当的调整。本文主要研究Adept-Two工业机器人动力学辨识的理论和操作。给出了仿真结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Neural network based identification of robot dynamics used for neuro-fuzzy controller
A technique of identifying the dynamics of a robotics system using neural network is presented. The identified model is used by a fuzzy controller to evaluate the range of the control variables and also the performance of the adaptive control laws on the identified model. An overview of the neuro-fuzzy control architecture is also discussed. This architecture uses two neural networks, one which identifies the system dynamics and another classifies the temporal response of the robotic system. The information from the neural networks is used to make suitable adjustments in the parameter of the fuzzy controller. This paper however concentrates on the theory and operation of identifying the dynamics of a Adept-Two industrial robot. Simulation results are presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信