基于神经成像生物标志物的阿尔茨海默病严重程度预测优化图构建

Sidong Liu, Weidong (Tom) Cai, L. Wen, D. Feng
{"title":"基于神经成像生物标志物的阿尔茨海默病严重程度预测优化图构建","authors":"Sidong Liu, Weidong (Tom) Cai, L. Wen, D. Feng","doi":"10.1109/ISBI.2013.6556779","DOIUrl":null,"url":null,"abstract":"The prediction of Alzheimer's disease (AD) severity is very important in AD diagnosis and patient care, especially for patients at early stage when clinical intervention is most effective and no irreversible damages have been formed to brains. To achieve accurate diagnosis of AD and identify the subjects who have higher risk to convert to AD, we proposed an AD severity prediction method based on the neuroimaging predictors evaluated by the region-wise atrophy patterns. The proposed method introduced a global cost function that encodes the empirical conversion rates for subjects at different progression stages from normal aging through mild cognitive impairment (MCI) to AD, based on the classic graph cut algorithm. Experimental results on ADNI baseline dataset of 758 subjects validated the efficacy of the proposed method.","PeriodicalId":178011,"journal":{"name":"2013 IEEE 10th International Symposium on Biomedical Imaging","volume":"140 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":"{\"title\":\"Neuroimaging biomarker based prediction of Alzheimer'S disease severity with optimized graph construction\",\"authors\":\"Sidong Liu, Weidong (Tom) Cai, L. Wen, D. Feng\",\"doi\":\"10.1109/ISBI.2013.6556779\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The prediction of Alzheimer's disease (AD) severity is very important in AD diagnosis and patient care, especially for patients at early stage when clinical intervention is most effective and no irreversible damages have been formed to brains. To achieve accurate diagnosis of AD and identify the subjects who have higher risk to convert to AD, we proposed an AD severity prediction method based on the neuroimaging predictors evaluated by the region-wise atrophy patterns. The proposed method introduced a global cost function that encodes the empirical conversion rates for subjects at different progression stages from normal aging through mild cognitive impairment (MCI) to AD, based on the classic graph cut algorithm. Experimental results on ADNI baseline dataset of 758 subjects validated the efficacy of the proposed method.\",\"PeriodicalId\":178011,\"journal\":{\"name\":\"2013 IEEE 10th International Symposium on Biomedical Imaging\",\"volume\":\"140 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"28\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE 10th International Symposium on Biomedical Imaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISBI.2013.6556779\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE 10th International Symposium on Biomedical Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2013.6556779","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28

摘要

阿尔茨海默病(Alzheimer's disease, AD)严重程度的预测在阿尔茨海默病的诊断和患者护理中具有重要意义,特别是对于临床干预最有效且尚未对大脑形成不可逆损伤的早期患者。为了准确诊断阿尔茨海默病并识别阿尔茨海默病的高风险受试者,我们提出了一种基于区域萎缩模式评估的神经影像学预测指标的阿尔茨海默病严重程度预测方法。该方法基于经典的图切算法,引入全局成本函数,对从正常衰老到轻度认知障碍(MCI)到AD的不同发展阶段的经验转化率进行编码。在758名受试者的ADNI基线数据集上的实验结果验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Neuroimaging biomarker based prediction of Alzheimer'S disease severity with optimized graph construction
The prediction of Alzheimer's disease (AD) severity is very important in AD diagnosis and patient care, especially for patients at early stage when clinical intervention is most effective and no irreversible damages have been formed to brains. To achieve accurate diagnosis of AD and identify the subjects who have higher risk to convert to AD, we proposed an AD severity prediction method based on the neuroimaging predictors evaluated by the region-wise atrophy patterns. The proposed method introduced a global cost function that encodes the empirical conversion rates for subjects at different progression stages from normal aging through mild cognitive impairment (MCI) to AD, based on the classic graph cut algorithm. Experimental results on ADNI baseline dataset of 758 subjects validated the efficacy of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信