{"title":"一种数字信号处理处理器核的硬件/软件划分算法","authors":"N. Togawa, T. Sakurai, M. Yanagisawa, T. Ohtsuki","doi":"10.1109/ASPDAC.1999.760027","DOIUrl":null,"url":null,"abstract":"A hardware/software cosynthesis system for processor cores of digital signal processing has been developed. This paper focuses on a hardware/software partitioning algorithm which is one of the key issues in the system. Given an input assembly code generated by the compiler in the system, the proposed hardware/software partitioning algorithm first determines the types and the numbers of required hardware units, such as multiple functional units, hardware loop units, and particular addressing units, for a processor core (initial resource allocation). Second, the hardware units determined at initial resource allocation are reduced one by one while the assembly code meets a given timing constraint (configuration of a processor core). The execution time of the assembly code becomes longer but the hardware costs for a processor core to execute it becomes smaller. Finally, it outputs an optimized assembly code and a processor configuration. Experimental results demonstrate that the system synthesizes processor cores effectively according to the features of an application program/data.","PeriodicalId":201352,"journal":{"name":"Proceedings of the ASP-DAC '99 Asia and South Pacific Design Automation Conference 1999 (Cat. No.99EX198)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A hardware/software partitioning algorithm for processor cores of digital signal processing\",\"authors\":\"N. Togawa, T. Sakurai, M. Yanagisawa, T. Ohtsuki\",\"doi\":\"10.1109/ASPDAC.1999.760027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A hardware/software cosynthesis system for processor cores of digital signal processing has been developed. This paper focuses on a hardware/software partitioning algorithm which is one of the key issues in the system. Given an input assembly code generated by the compiler in the system, the proposed hardware/software partitioning algorithm first determines the types and the numbers of required hardware units, such as multiple functional units, hardware loop units, and particular addressing units, for a processor core (initial resource allocation). Second, the hardware units determined at initial resource allocation are reduced one by one while the assembly code meets a given timing constraint (configuration of a processor core). The execution time of the assembly code becomes longer but the hardware costs for a processor core to execute it becomes smaller. Finally, it outputs an optimized assembly code and a processor configuration. Experimental results demonstrate that the system synthesizes processor cores effectively according to the features of an application program/data.\",\"PeriodicalId\":201352,\"journal\":{\"name\":\"Proceedings of the ASP-DAC '99 Asia and South Pacific Design Automation Conference 1999 (Cat. No.99EX198)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-01-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ASP-DAC '99 Asia and South Pacific Design Automation Conference 1999 (Cat. No.99EX198)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASPDAC.1999.760027\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ASP-DAC '99 Asia and South Pacific Design Automation Conference 1999 (Cat. No.99EX198)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASPDAC.1999.760027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A hardware/software partitioning algorithm for processor cores of digital signal processing
A hardware/software cosynthesis system for processor cores of digital signal processing has been developed. This paper focuses on a hardware/software partitioning algorithm which is one of the key issues in the system. Given an input assembly code generated by the compiler in the system, the proposed hardware/software partitioning algorithm first determines the types and the numbers of required hardware units, such as multiple functional units, hardware loop units, and particular addressing units, for a processor core (initial resource allocation). Second, the hardware units determined at initial resource allocation are reduced one by one while the assembly code meets a given timing constraint (configuration of a processor core). The execution time of the assembly code becomes longer but the hardware costs for a processor core to execute it becomes smaller. Finally, it outputs an optimized assembly code and a processor configuration. Experimental results demonstrate that the system synthesizes processor cores effectively according to the features of an application program/data.