{"title":"多传感器广义标记多伯努利滤波器的快速实现","authors":"D. Moratuwage, Yuthika Punchihewa, Ji Youn Lee","doi":"10.1109/ICCAIS56082.2022.9990410","DOIUrl":null,"url":null,"abstract":"The recent multi-sensor Generalized Labeled Multi-Bernoulli (GLMB) is an efficient analytic implementation to the multi-sensor multi-object state estimation problem. The multi-sensor multi-object posterior is recursively propagated using the multi-sensor multi-object filtering density, by updating it with multi-sensor measurements at each time step. The measurement update step requires solving a series of NP-hard multidimensional assignment problems. In this paper, we introduce a faster implementation of this algorithm by an intuitive approximation, and combine that with the Gibbs sampler based truncation approach to produce an efficient multi-sensor multi-object estimation solution suitable for practical applications.","PeriodicalId":273404,"journal":{"name":"2022 11th International Conference on Control, Automation and Information Sciences (ICCAIS)","volume":"269 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Faster implementation of Multi-sensor Generalized Labeled Multi-Bernoulli Filter\",\"authors\":\"D. Moratuwage, Yuthika Punchihewa, Ji Youn Lee\",\"doi\":\"10.1109/ICCAIS56082.2022.9990410\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The recent multi-sensor Generalized Labeled Multi-Bernoulli (GLMB) is an efficient analytic implementation to the multi-sensor multi-object state estimation problem. The multi-sensor multi-object posterior is recursively propagated using the multi-sensor multi-object filtering density, by updating it with multi-sensor measurements at each time step. The measurement update step requires solving a series of NP-hard multidimensional assignment problems. In this paper, we introduce a faster implementation of this algorithm by an intuitive approximation, and combine that with the Gibbs sampler based truncation approach to produce an efficient multi-sensor multi-object estimation solution suitable for practical applications.\",\"PeriodicalId\":273404,\"journal\":{\"name\":\"2022 11th International Conference on Control, Automation and Information Sciences (ICCAIS)\",\"volume\":\"269 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 11th International Conference on Control, Automation and Information Sciences (ICCAIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCAIS56082.2022.9990410\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 11th International Conference on Control, Automation and Information Sciences (ICCAIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCAIS56082.2022.9990410","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Faster implementation of Multi-sensor Generalized Labeled Multi-Bernoulli Filter
The recent multi-sensor Generalized Labeled Multi-Bernoulli (GLMB) is an efficient analytic implementation to the multi-sensor multi-object state estimation problem. The multi-sensor multi-object posterior is recursively propagated using the multi-sensor multi-object filtering density, by updating it with multi-sensor measurements at each time step. The measurement update step requires solving a series of NP-hard multidimensional assignment problems. In this paper, we introduce a faster implementation of this algorithm by an intuitive approximation, and combine that with the Gibbs sampler based truncation approach to produce an efficient multi-sensor multi-object estimation solution suitable for practical applications.