多传感器广义标记多伯努利滤波器的快速实现

D. Moratuwage, Yuthika Punchihewa, Ji Youn Lee
{"title":"多传感器广义标记多伯努利滤波器的快速实现","authors":"D. Moratuwage, Yuthika Punchihewa, Ji Youn Lee","doi":"10.1109/ICCAIS56082.2022.9990410","DOIUrl":null,"url":null,"abstract":"The recent multi-sensor Generalized Labeled Multi-Bernoulli (GLMB) is an efficient analytic implementation to the multi-sensor multi-object state estimation problem. The multi-sensor multi-object posterior is recursively propagated using the multi-sensor multi-object filtering density, by updating it with multi-sensor measurements at each time step. The measurement update step requires solving a series of NP-hard multidimensional assignment problems. In this paper, we introduce a faster implementation of this algorithm by an intuitive approximation, and combine that with the Gibbs sampler based truncation approach to produce an efficient multi-sensor multi-object estimation solution suitable for practical applications.","PeriodicalId":273404,"journal":{"name":"2022 11th International Conference on Control, Automation and Information Sciences (ICCAIS)","volume":"269 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Faster implementation of Multi-sensor Generalized Labeled Multi-Bernoulli Filter\",\"authors\":\"D. Moratuwage, Yuthika Punchihewa, Ji Youn Lee\",\"doi\":\"10.1109/ICCAIS56082.2022.9990410\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The recent multi-sensor Generalized Labeled Multi-Bernoulli (GLMB) is an efficient analytic implementation to the multi-sensor multi-object state estimation problem. The multi-sensor multi-object posterior is recursively propagated using the multi-sensor multi-object filtering density, by updating it with multi-sensor measurements at each time step. The measurement update step requires solving a series of NP-hard multidimensional assignment problems. In this paper, we introduce a faster implementation of this algorithm by an intuitive approximation, and combine that with the Gibbs sampler based truncation approach to produce an efficient multi-sensor multi-object estimation solution suitable for practical applications.\",\"PeriodicalId\":273404,\"journal\":{\"name\":\"2022 11th International Conference on Control, Automation and Information Sciences (ICCAIS)\",\"volume\":\"269 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 11th International Conference on Control, Automation and Information Sciences (ICCAIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCAIS56082.2022.9990410\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 11th International Conference on Control, Automation and Information Sciences (ICCAIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCAIS56082.2022.9990410","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

近年来提出的多传感器广义标记多伯努利(GLMB)方法是解决多传感器多目标状态估计问题的一种有效的解析方法。利用多传感器多目标滤波密度递归传播多传感器多目标后验,在每个时间步用多传感器测量值更新后验。测量更新步骤需要解决一系列np困难的多维分配问题。在本文中,我们引入了一种直观近似的快速实现算法,并将其与基于Gibbs采样器的截断方法相结合,产生了一种适用于实际应用的高效多传感器多目标估计方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Faster implementation of Multi-sensor Generalized Labeled Multi-Bernoulli Filter
The recent multi-sensor Generalized Labeled Multi-Bernoulli (GLMB) is an efficient analytic implementation to the multi-sensor multi-object state estimation problem. The multi-sensor multi-object posterior is recursively propagated using the multi-sensor multi-object filtering density, by updating it with multi-sensor measurements at each time step. The measurement update step requires solving a series of NP-hard multidimensional assignment problems. In this paper, we introduce a faster implementation of this algorithm by an intuitive approximation, and combine that with the Gibbs sampler based truncation approach to produce an efficient multi-sensor multi-object estimation solution suitable for practical applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信