Y. Yuminaka, Osamu Katoh, Y. Sasaki, T. Aoki, T. Higuchi
{"title":"基于多值码分多址的VLSI系统高效数据传输技术","authors":"Y. Yuminaka, Osamu Katoh, Y. Sasaki, T. Aoki, T. Higuchi","doi":"10.1109/ISMVL.2000.848654","DOIUrl":null,"url":null,"abstract":"This paper investigates a multiple-valued code-division multiple access (MV-CDMA) technique to achieve efficient data transmission and processing in VLSI systems. CDMA employs a pseudo-random orthogonal m-sequence carrier as a multiplexable information carrier. Orthogonal property of m-sequences enables us to multiplex several computational activities into a single circuit, and execute in parallel using multiplexed data transmission. With reduced interconnection. Also, randomness of m-sequences offers the high tolerance to noise interference. In the case of conventional CDMA, however, co-channel interference due to carrier phase offset error severely restricts the available number of multiplexing. In order to eliminate carrier phase offset error, we propose a new class of multiple-valued m-sequences. An application example of neural networks is discussed to demonstrate the feasibility of MV-CDMA in terms of reducing interconnections and eliminating co-channel interference.","PeriodicalId":334235,"journal":{"name":"Proceedings 30th IEEE International Symposium on Multiple-Valued Logic (ISMVL 2000)","volume":"263 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"An efficient data transmission technique for VLSI systems based on multiple-valued code-division multiple access\",\"authors\":\"Y. Yuminaka, Osamu Katoh, Y. Sasaki, T. Aoki, T. Higuchi\",\"doi\":\"10.1109/ISMVL.2000.848654\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper investigates a multiple-valued code-division multiple access (MV-CDMA) technique to achieve efficient data transmission and processing in VLSI systems. CDMA employs a pseudo-random orthogonal m-sequence carrier as a multiplexable information carrier. Orthogonal property of m-sequences enables us to multiplex several computational activities into a single circuit, and execute in parallel using multiplexed data transmission. With reduced interconnection. Also, randomness of m-sequences offers the high tolerance to noise interference. In the case of conventional CDMA, however, co-channel interference due to carrier phase offset error severely restricts the available number of multiplexing. In order to eliminate carrier phase offset error, we propose a new class of multiple-valued m-sequences. An application example of neural networks is discussed to demonstrate the feasibility of MV-CDMA in terms of reducing interconnections and eliminating co-channel interference.\",\"PeriodicalId\":334235,\"journal\":{\"name\":\"Proceedings 30th IEEE International Symposium on Multiple-Valued Logic (ISMVL 2000)\",\"volume\":\"263 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 30th IEEE International Symposium on Multiple-Valued Logic (ISMVL 2000)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISMVL.2000.848654\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 30th IEEE International Symposium on Multiple-Valued Logic (ISMVL 2000)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISMVL.2000.848654","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An efficient data transmission technique for VLSI systems based on multiple-valued code-division multiple access
This paper investigates a multiple-valued code-division multiple access (MV-CDMA) technique to achieve efficient data transmission and processing in VLSI systems. CDMA employs a pseudo-random orthogonal m-sequence carrier as a multiplexable information carrier. Orthogonal property of m-sequences enables us to multiplex several computational activities into a single circuit, and execute in parallel using multiplexed data transmission. With reduced interconnection. Also, randomness of m-sequences offers the high tolerance to noise interference. In the case of conventional CDMA, however, co-channel interference due to carrier phase offset error severely restricts the available number of multiplexing. In order to eliminate carrier phase offset error, we propose a new class of multiple-valued m-sequences. An application example of neural networks is discussed to demonstrate the feasibility of MV-CDMA in terms of reducing interconnections and eliminating co-channel interference.