L. Litvinova, V. Malashchenko, E. Shunkin, V. Shupletsova, O. Khaziakhmatova, K. Yurova, E. Melashchenko, I. Khlusov, E. Komarova, V. Chebodaeva, Y. Sharkeev
{"title":"多层磷酸钙涂层:用于骨免疫学的骨样地形模型","authors":"L. Litvinova, V. Malashchenko, E. Shunkin, V. Shupletsova, O. Khaziakhmatova, K. Yurova, E. Melashchenko, I. Khlusov, E. Komarova, V. Chebodaeva, Y. Sharkeev","doi":"10.17223/9785946219242/231","DOIUrl":null,"url":null,"abstract":"Osteoimmunolgy describes the interactions between blood immune cells and human multipotent mesenchymal stromal cells (hMMSCs) as a basis of successful wound and fracture healing. The aim was to investigate in vitro interaction of adipose-derived hMMSCs and human blood mononuclear cells (hBMNCs) modulated by calcium phosphate (CaP) coating in 3D culture. Titanium plates (10 × 10 × 1 mm3) with micro-arc bilateral multilevel CaP coatings were used. Cell-IQ phase-contrast microscopy and the real-time cell analyzer (RTCA) showed the CaP coating and hBMNCs synergistic negative effects on hMMSC motility that could be conditioned by enhanced osteogenic differentiation of stromal cells. Indeed, a 10-fold increase in the bone mineralization around the CaP-coated samples was detected in the mixed (hBMNCs + hMMSCs) 3D culture. Thus, cellular and molecular crosstalk between hBMNCs and hMMSCs modulated by multilevel micro-arc CaP coating with bone-like topography is an effective 3D model to study in vitro the novel pathways of osteoimmunology.","PeriodicalId":408630,"journal":{"name":"PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON PHYSICAL MESOMECHANICS. MATERIALS WITH MULTILEVEL HIERARCHICAL STRUCTURE AND INTELLIGENT MANUFACTURING TECHNOLOGY","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multilevel calcium phosphate coating: A model of bone-like topography for osteoimmunology\",\"authors\":\"L. Litvinova, V. Malashchenko, E. Shunkin, V. Shupletsova, O. Khaziakhmatova, K. Yurova, E. Melashchenko, I. Khlusov, E. Komarova, V. Chebodaeva, Y. Sharkeev\",\"doi\":\"10.17223/9785946219242/231\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Osteoimmunolgy describes the interactions between blood immune cells and human multipotent mesenchymal stromal cells (hMMSCs) as a basis of successful wound and fracture healing. The aim was to investigate in vitro interaction of adipose-derived hMMSCs and human blood mononuclear cells (hBMNCs) modulated by calcium phosphate (CaP) coating in 3D culture. Titanium plates (10 × 10 × 1 mm3) with micro-arc bilateral multilevel CaP coatings were used. Cell-IQ phase-contrast microscopy and the real-time cell analyzer (RTCA) showed the CaP coating and hBMNCs synergistic negative effects on hMMSC motility that could be conditioned by enhanced osteogenic differentiation of stromal cells. Indeed, a 10-fold increase in the bone mineralization around the CaP-coated samples was detected in the mixed (hBMNCs + hMMSCs) 3D culture. Thus, cellular and molecular crosstalk between hBMNCs and hMMSCs modulated by multilevel micro-arc CaP coating with bone-like topography is an effective 3D model to study in vitro the novel pathways of osteoimmunology.\",\"PeriodicalId\":408630,\"journal\":{\"name\":\"PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON PHYSICAL MESOMECHANICS. MATERIALS WITH MULTILEVEL HIERARCHICAL STRUCTURE AND INTELLIGENT MANUFACTURING TECHNOLOGY\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON PHYSICAL MESOMECHANICS. MATERIALS WITH MULTILEVEL HIERARCHICAL STRUCTURE AND INTELLIGENT MANUFACTURING TECHNOLOGY\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17223/9785946219242/231\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON PHYSICAL MESOMECHANICS. MATERIALS WITH MULTILEVEL HIERARCHICAL STRUCTURE AND INTELLIGENT MANUFACTURING TECHNOLOGY","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17223/9785946219242/231","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Multilevel calcium phosphate coating: A model of bone-like topography for osteoimmunology
Osteoimmunolgy describes the interactions between blood immune cells and human multipotent mesenchymal stromal cells (hMMSCs) as a basis of successful wound and fracture healing. The aim was to investigate in vitro interaction of adipose-derived hMMSCs and human blood mononuclear cells (hBMNCs) modulated by calcium phosphate (CaP) coating in 3D culture. Titanium plates (10 × 10 × 1 mm3) with micro-arc bilateral multilevel CaP coatings were used. Cell-IQ phase-contrast microscopy and the real-time cell analyzer (RTCA) showed the CaP coating and hBMNCs synergistic negative effects on hMMSC motility that could be conditioned by enhanced osteogenic differentiation of stromal cells. Indeed, a 10-fold increase in the bone mineralization around the CaP-coated samples was detected in the mixed (hBMNCs + hMMSCs) 3D culture. Thus, cellular and molecular crosstalk between hBMNCs and hMMSCs modulated by multilevel micro-arc CaP coating with bone-like topography is an effective 3D model to study in vitro the novel pathways of osteoimmunology.