M. Z. Ilyas, P. Saad, Muhammad Imran Ahmad, A. Rusli, S. Samad, Aini Hussin, K. A. Ishak
{"title":"使用最小均方自适应滤波器改进噪声环境下的混合扬声器验证","authors":"M. Z. Ilyas, P. Saad, Muhammad Imran Ahmad, A. Rusli, S. Samad, Aini Hussin, K. A. Ishak","doi":"10.1109/ICT4M.2014.7020659","DOIUrl":null,"url":null,"abstract":"In this paper, we present a hybrid speaker verification system based on the Hidden Markov Models (HMMs) and Vector Quantization(VQ) and Least Mean-Square (LMS) adaptive filtering. The aim of using hybrid speaker verification is to improve the HMMs performance, while LMS adaptive filtering is to improve the hybrid speaker verification performance in noisy environments. A Malay spoken digit database is used for the training and testing. It is shown that, in a clean environment a Total Success Rate (TSR) of 99.97% is achieved using hybrid VQ and HMMs. For speaker verification, the true speaker rejection rate is 0.06% while the impostor acceptance rate is 0.03% and the equal error rate (EER) is 11.72%. In noisy environments without LMS adaptive filtering TSRs of between 62.57%-76.80% are achieved for Signal to Noise Ratio (SNR) of 0-30 dBs. Meanwhile, after LMS filtering, TSRs of between 77.31%-76.87% are achieved for SNRs of 0-30 dB.","PeriodicalId":327033,"journal":{"name":"The 5th International Conference on Information and Communication Technology for The Muslim World (ICT4M)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improving hybrid speaker verification in noisy environments using least mean-square adaptive filters\",\"authors\":\"M. Z. Ilyas, P. Saad, Muhammad Imran Ahmad, A. Rusli, S. Samad, Aini Hussin, K. A. Ishak\",\"doi\":\"10.1109/ICT4M.2014.7020659\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present a hybrid speaker verification system based on the Hidden Markov Models (HMMs) and Vector Quantization(VQ) and Least Mean-Square (LMS) adaptive filtering. The aim of using hybrid speaker verification is to improve the HMMs performance, while LMS adaptive filtering is to improve the hybrid speaker verification performance in noisy environments. A Malay spoken digit database is used for the training and testing. It is shown that, in a clean environment a Total Success Rate (TSR) of 99.97% is achieved using hybrid VQ and HMMs. For speaker verification, the true speaker rejection rate is 0.06% while the impostor acceptance rate is 0.03% and the equal error rate (EER) is 11.72%. In noisy environments without LMS adaptive filtering TSRs of between 62.57%-76.80% are achieved for Signal to Noise Ratio (SNR) of 0-30 dBs. Meanwhile, after LMS filtering, TSRs of between 77.31%-76.87% are achieved for SNRs of 0-30 dB.\",\"PeriodicalId\":327033,\"journal\":{\"name\":\"The 5th International Conference on Information and Communication Technology for The Muslim World (ICT4M)\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The 5th International Conference on Information and Communication Technology for The Muslim World (ICT4M)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICT4M.2014.7020659\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 5th International Conference on Information and Communication Technology for The Muslim World (ICT4M)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICT4M.2014.7020659","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Improving hybrid speaker verification in noisy environments using least mean-square adaptive filters
In this paper, we present a hybrid speaker verification system based on the Hidden Markov Models (HMMs) and Vector Quantization(VQ) and Least Mean-Square (LMS) adaptive filtering. The aim of using hybrid speaker verification is to improve the HMMs performance, while LMS adaptive filtering is to improve the hybrid speaker verification performance in noisy environments. A Malay spoken digit database is used for the training and testing. It is shown that, in a clean environment a Total Success Rate (TSR) of 99.97% is achieved using hybrid VQ and HMMs. For speaker verification, the true speaker rejection rate is 0.06% while the impostor acceptance rate is 0.03% and the equal error rate (EER) is 11.72%. In noisy environments without LMS adaptive filtering TSRs of between 62.57%-76.80% are achieved for Signal to Noise Ratio (SNR) of 0-30 dBs. Meanwhile, after LMS filtering, TSRs of between 77.31%-76.87% are achieved for SNRs of 0-30 dB.