{"title":"具有分数阶段的滤波无源双端口简单混沌振荡器","authors":"J. Petrzela","doi":"10.23919/MIXDES.2019.8787078","DOIUrl":null,"url":null,"abstract":"Individual results coming from this paper can be considered as computer-aided confirmation of presence of robust chaos within dynamics of lumped electronic system composed by a closed-loop of filter and nonlinear active two-port. It is showed that the fully-passive voltage-mode filter with a fractional-order sub-part can generate interesting dense strange state attractors. Moreover, these attractors are geometrically different from those produced by a similar integer-order mathematical model which is a third-order autonomous deterministic dynamical system. There is strong reason to believe that oscillators provided in this paper belong to the simplest-possible fractional-order chaotic systems. Existence of the structurally stable chaotic attractors is proved by showing plane projections, i.e. oscilloscope screenshots.","PeriodicalId":309822,"journal":{"name":"2019 MIXDES - 26th International Conference \"Mixed Design of Integrated Circuits and Systems\"","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simple Chaotic Oscillator with Filtering Passive Two-Port Having Fractional-Order Segments\",\"authors\":\"J. Petrzela\",\"doi\":\"10.23919/MIXDES.2019.8787078\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Individual results coming from this paper can be considered as computer-aided confirmation of presence of robust chaos within dynamics of lumped electronic system composed by a closed-loop of filter and nonlinear active two-port. It is showed that the fully-passive voltage-mode filter with a fractional-order sub-part can generate interesting dense strange state attractors. Moreover, these attractors are geometrically different from those produced by a similar integer-order mathematical model which is a third-order autonomous deterministic dynamical system. There is strong reason to believe that oscillators provided in this paper belong to the simplest-possible fractional-order chaotic systems. Existence of the structurally stable chaotic attractors is proved by showing plane projections, i.e. oscilloscope screenshots.\",\"PeriodicalId\":309822,\"journal\":{\"name\":\"2019 MIXDES - 26th International Conference \\\"Mixed Design of Integrated Circuits and Systems\\\"\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 MIXDES - 26th International Conference \\\"Mixed Design of Integrated Circuits and Systems\\\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/MIXDES.2019.8787078\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 MIXDES - 26th International Conference \"Mixed Design of Integrated Circuits and Systems\"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/MIXDES.2019.8787078","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Simple Chaotic Oscillator with Filtering Passive Two-Port Having Fractional-Order Segments
Individual results coming from this paper can be considered as computer-aided confirmation of presence of robust chaos within dynamics of lumped electronic system composed by a closed-loop of filter and nonlinear active two-port. It is showed that the fully-passive voltage-mode filter with a fractional-order sub-part can generate interesting dense strange state attractors. Moreover, these attractors are geometrically different from those produced by a similar integer-order mathematical model which is a third-order autonomous deterministic dynamical system. There is strong reason to believe that oscillators provided in this paper belong to the simplest-possible fractional-order chaotic systems. Existence of the structurally stable chaotic attractors is proved by showing plane projections, i.e. oscilloscope screenshots.