带阻尼笼的永磁无刷直流电机无传感器控制的磁链观测器模型

Peng Li, Wei Sun, Jian-Xin Shen
{"title":"带阻尼笼的永磁无刷直流电机无传感器控制的磁链观测器模型","authors":"Peng Li, Wei Sun, Jian-Xin Shen","doi":"10.1109/EVER.2017.7935909","DOIUrl":null,"url":null,"abstract":"Flux observer is a common and practical way to estimate the rotor position and speed for sensorless control of the permanent magnet (PM) AC motors. Currents in the damper cage influent the accuracy of the observed rotor position and speed severely. However, it is really difficult to measure the currents in the damper cage. According to the generation principle of the currents in the damper cage, the currents in the damper cage are higher harmonics. That's to say, the fundamental component of the stator currents become DC components under the rotor rotating coordination system, while the currents in the damper cage are still AC components. Therefore, if only the fundamental components of the stator currents, flux linkages, terminal voltage, etc. are considered, the currents in the damper cage can be ignored. Because the rotor position is only related to the fundamental component of the rotor PM flux linkage, an improved flux observer mathematical model is derived for the BLDC motor with a damper cage in this paper. The accuracy of the proposed flux observer is verified by both of numerical analysis results and experimental results.","PeriodicalId":395329,"journal":{"name":"2017 Twelfth International Conference on Ecological Vehicles and Renewable Energies (EVER)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Flux observer model for sensorless control of PM BLDC motor with a damper cage\",\"authors\":\"Peng Li, Wei Sun, Jian-Xin Shen\",\"doi\":\"10.1109/EVER.2017.7935909\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Flux observer is a common and practical way to estimate the rotor position and speed for sensorless control of the permanent magnet (PM) AC motors. Currents in the damper cage influent the accuracy of the observed rotor position and speed severely. However, it is really difficult to measure the currents in the damper cage. According to the generation principle of the currents in the damper cage, the currents in the damper cage are higher harmonics. That's to say, the fundamental component of the stator currents become DC components under the rotor rotating coordination system, while the currents in the damper cage are still AC components. Therefore, if only the fundamental components of the stator currents, flux linkages, terminal voltage, etc. are considered, the currents in the damper cage can be ignored. Because the rotor position is only related to the fundamental component of the rotor PM flux linkage, an improved flux observer mathematical model is derived for the BLDC motor with a damper cage in this paper. The accuracy of the proposed flux observer is verified by both of numerical analysis results and experimental results.\",\"PeriodicalId\":395329,\"journal\":{\"name\":\"2017 Twelfth International Conference on Ecological Vehicles and Renewable Energies (EVER)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 Twelfth International Conference on Ecological Vehicles and Renewable Energies (EVER)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EVER.2017.7935909\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Twelfth International Conference on Ecological Vehicles and Renewable Energies (EVER)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EVER.2017.7935909","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

磁链观测器是一种常用的、实用的永磁交流电机无传感器控制转子位置和转速估计方法。阻尼笼内的电流严重影响观察到的转子位置和转速的精度。然而,测量阻尼笼内的电流确实很困难。根据阻尼笼内电流的产生原理,阻尼笼内电流为高次谐波。也就是说,定子电流的基元分量在转子旋转坐标系下变成直流分量,而阻尼笼内的电流仍然是交流分量。因此,如果只考虑定子电流、磁链、端电压等基本分量,则可以忽略阻尼笼内的电流。由于转子位置只与转子永磁磁链的基本分量有关,本文针对带阻尼笼的无刷直流电机,推导了改进的磁链观测器数学模型。数值分析结果和实验结果验证了所提通量观测器的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Flux observer model for sensorless control of PM BLDC motor with a damper cage
Flux observer is a common and practical way to estimate the rotor position and speed for sensorless control of the permanent magnet (PM) AC motors. Currents in the damper cage influent the accuracy of the observed rotor position and speed severely. However, it is really difficult to measure the currents in the damper cage. According to the generation principle of the currents in the damper cage, the currents in the damper cage are higher harmonics. That's to say, the fundamental component of the stator currents become DC components under the rotor rotating coordination system, while the currents in the damper cage are still AC components. Therefore, if only the fundamental components of the stator currents, flux linkages, terminal voltage, etc. are considered, the currents in the damper cage can be ignored. Because the rotor position is only related to the fundamental component of the rotor PM flux linkage, an improved flux observer mathematical model is derived for the BLDC motor with a damper cage in this paper. The accuracy of the proposed flux observer is verified by both of numerical analysis results and experimental results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信