基于特征子集选择结合不同分类器的前列腺癌监督分类基因表达数据分析

S. Bouazza, A. Zeroual, K. Auhmani
{"title":"基于特征子集选择结合不同分类器的前列腺癌监督分类基因表达数据分析","authors":"S. Bouazza, A. Zeroual, K. Auhmani","doi":"10.1109/ICMCS.2016.7905660","DOIUrl":null,"url":null,"abstract":"In machine learning, feature selection is the process of selecting a subset of relevant features for use in model construction. A comparative evaluation between selection methods: SNR, Correlation Coefficient and Max-relevance Min-Redundancy is carried out, using the dataset of prostate cancer. The Evaluation of the dimensionality reduction was done by using the supervised classifier K Nearest Neighbors (KNN), Support Vector Machines (SVM), Linear Discriminant Analysis (LDA) and Decision Tree for supervised classification (DTC). The purpose of classification is to assign an object to a certain class. The classifier shows that the combination between SNR and the LDA classifier can present the highest accuracy.","PeriodicalId":345854,"journal":{"name":"2016 5th International Conference on Multimedia Computing and Systems (ICMCS)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Gene expression data analyses for supervised prostate cancer classification based on feature subset selection combined with different classifiers\",\"authors\":\"S. Bouazza, A. Zeroual, K. Auhmani\",\"doi\":\"10.1109/ICMCS.2016.7905660\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In machine learning, feature selection is the process of selecting a subset of relevant features for use in model construction. A comparative evaluation between selection methods: SNR, Correlation Coefficient and Max-relevance Min-Redundancy is carried out, using the dataset of prostate cancer. The Evaluation of the dimensionality reduction was done by using the supervised classifier K Nearest Neighbors (KNN), Support Vector Machines (SVM), Linear Discriminant Analysis (LDA) and Decision Tree for supervised classification (DTC). The purpose of classification is to assign an object to a certain class. The classifier shows that the combination between SNR and the LDA classifier can present the highest accuracy.\",\"PeriodicalId\":345854,\"journal\":{\"name\":\"2016 5th International Conference on Multimedia Computing and Systems (ICMCS)\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 5th International Conference on Multimedia Computing and Systems (ICMCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMCS.2016.7905660\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 5th International Conference on Multimedia Computing and Systems (ICMCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMCS.2016.7905660","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在机器学习中,特征选择是选择相关特征子集用于模型构建的过程。以前列腺癌数据集为例,对信噪比、相关系数和最大相关最小冗余三种选择方法进行了比较评价。采用监督分类器K近邻(KNN)、支持向量机(SVM)、线性判别分析(LDA)和监督分类决策树(DTC)进行降维评价。分类的目的是将对象分配到某个类。该分类器表明,信噪比与LDA分类器的结合可以呈现出最高的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Gene expression data analyses for supervised prostate cancer classification based on feature subset selection combined with different classifiers
In machine learning, feature selection is the process of selecting a subset of relevant features for use in model construction. A comparative evaluation between selection methods: SNR, Correlation Coefficient and Max-relevance Min-Redundancy is carried out, using the dataset of prostate cancer. The Evaluation of the dimensionality reduction was done by using the supervised classifier K Nearest Neighbors (KNN), Support Vector Machines (SVM), Linear Discriminant Analysis (LDA) and Decision Tree for supervised classification (DTC). The purpose of classification is to assign an object to a certain class. The classifier shows that the combination between SNR and the LDA classifier can present the highest accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信