{"title":"融合加速度计和多导联心电数据的人体日常活动识别","authors":"Ruiting Jia, B. Liu","doi":"10.1109/ICSPCC.2013.6664056","DOIUrl":null,"url":null,"abstract":"Human daily activity recognition has gained much attention since it has a wide range of applications. In this paper, we propose a novel scheme for recognizing human daily activity by fusing multiple wearable sensors, i.e., accelerometer and multi-lead ECG. Firstly, both time and frequency domain features are extracted from raw sensor data. In order to alleviate the computation complexity of subsequent process, the dimensions of feature vectors would be sharply reduced by performing linear discriminant analysis (LDA). Then, the reduced feature vectors are classified by relevance vector machines (RVM). Finally, considering different sensors and leads would provide complementary information about the human activity, the individual classification results are fused at the decision level to improve the overall recognition performance. Experimental results show that if seven leads of ECG and accelerometer are fused, we can even achieve recognition accuracy as high as 99.57%. Furthermore, the proposed scheme has great potential in real-time applications due to its strong ability in feature dimensionality reduction, simple classifier structure, and perfect recognition performance.","PeriodicalId":124509,"journal":{"name":"2013 IEEE International Conference on Signal Processing, Communication and Computing (ICSPCC 2013)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":"{\"title\":\"Human daily activity recognition by fusing accelerometer and multi-lead ECG data\",\"authors\":\"Ruiting Jia, B. Liu\",\"doi\":\"10.1109/ICSPCC.2013.6664056\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Human daily activity recognition has gained much attention since it has a wide range of applications. In this paper, we propose a novel scheme for recognizing human daily activity by fusing multiple wearable sensors, i.e., accelerometer and multi-lead ECG. Firstly, both time and frequency domain features are extracted from raw sensor data. In order to alleviate the computation complexity of subsequent process, the dimensions of feature vectors would be sharply reduced by performing linear discriminant analysis (LDA). Then, the reduced feature vectors are classified by relevance vector machines (RVM). Finally, considering different sensors and leads would provide complementary information about the human activity, the individual classification results are fused at the decision level to improve the overall recognition performance. Experimental results show that if seven leads of ECG and accelerometer are fused, we can even achieve recognition accuracy as high as 99.57%. Furthermore, the proposed scheme has great potential in real-time applications due to its strong ability in feature dimensionality reduction, simple classifier structure, and perfect recognition performance.\",\"PeriodicalId\":124509,\"journal\":{\"name\":\"2013 IEEE International Conference on Signal Processing, Communication and Computing (ICSPCC 2013)\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"30\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE International Conference on Signal Processing, Communication and Computing (ICSPCC 2013)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSPCC.2013.6664056\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Signal Processing, Communication and Computing (ICSPCC 2013)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSPCC.2013.6664056","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Human daily activity recognition by fusing accelerometer and multi-lead ECG data
Human daily activity recognition has gained much attention since it has a wide range of applications. In this paper, we propose a novel scheme for recognizing human daily activity by fusing multiple wearable sensors, i.e., accelerometer and multi-lead ECG. Firstly, both time and frequency domain features are extracted from raw sensor data. In order to alleviate the computation complexity of subsequent process, the dimensions of feature vectors would be sharply reduced by performing linear discriminant analysis (LDA). Then, the reduced feature vectors are classified by relevance vector machines (RVM). Finally, considering different sensors and leads would provide complementary information about the human activity, the individual classification results are fused at the decision level to improve the overall recognition performance. Experimental results show that if seven leads of ECG and accelerometer are fused, we can even achieve recognition accuracy as high as 99.57%. Furthermore, the proposed scheme has great potential in real-time applications due to its strong ability in feature dimensionality reduction, simple classifier structure, and perfect recognition performance.