引入内禀排斥场概念的改进粒子群算法

Zhang Wei, Wang Jing-chun, Xiong Zhi-hua
{"title":"引入内禀排斥场概念的改进粒子群算法","authors":"Zhang Wei, Wang Jing-chun, Xiong Zhi-hua","doi":"10.1109/ISCID.2013.27","DOIUrl":null,"url":null,"abstract":"An improved Particle Swarm Optimization Algorithm is proposed in this article. Inspired by the existence of Intermolecular Forces in physics, we bring particles that are influenced by repulsion in this Algorithm to keep the population active at all the stages. Meanwhile, the convergence speed can be assured because of the existence of particles that implement Standard Particle Swarm Optimization. Experimental results show that this improved algorithm can effectively solve the local optimal problems.","PeriodicalId":297027,"journal":{"name":"2013 Sixth International Symposium on Computational Intelligence and Design","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Modified PSO Algorithm with the Concept of Intrinsic Repulsive Field\",\"authors\":\"Zhang Wei, Wang Jing-chun, Xiong Zhi-hua\",\"doi\":\"10.1109/ISCID.2013.27\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An improved Particle Swarm Optimization Algorithm is proposed in this article. Inspired by the existence of Intermolecular Forces in physics, we bring particles that are influenced by repulsion in this Algorithm to keep the population active at all the stages. Meanwhile, the convergence speed can be assured because of the existence of particles that implement Standard Particle Swarm Optimization. Experimental results show that this improved algorithm can effectively solve the local optimal problems.\",\"PeriodicalId\":297027,\"journal\":{\"name\":\"2013 Sixth International Symposium on Computational Intelligence and Design\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 Sixth International Symposium on Computational Intelligence and Design\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISCID.2013.27\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Sixth International Symposium on Computational Intelligence and Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCID.2013.27","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种改进的粒子群优化算法。受物理中存在的分子间作用力的启发,我们在算法中引入了受斥力影响的粒子,以保持种群在所有阶段的活跃。同时,由于存在执行标准粒子群优化的粒子,可以保证收敛速度。实验结果表明,该改进算法能有效地解决局部最优问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Modified PSO Algorithm with the Concept of Intrinsic Repulsive Field
An improved Particle Swarm Optimization Algorithm is proposed in this article. Inspired by the existence of Intermolecular Forces in physics, we bring particles that are influenced by repulsion in this Algorithm to keep the population active at all the stages. Meanwhile, the convergence speed can be assured because of the existence of particles that implement Standard Particle Swarm Optimization. Experimental results show that this improved algorithm can effectively solve the local optimal problems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信