质谱数据分析的极限学习机

Mario Ulloa Orellana, Xaviera A. López-Cortés, David Zabala-Blanco, Pablo Palacios Játiva, Jayanta Datta
{"title":"质谱数据分析的极限学习机","authors":"Mario Ulloa Orellana, Xaviera A. López-Cortés, David Zabala-Blanco, Pablo Palacios Játiva, Jayanta Datta","doi":"10.1109/Colcom56784.2022.10107875","DOIUrl":null,"url":null,"abstract":"In this work, we introduce the use of a weighted extreme learning machine (ELM) to give an automated predictive value to mass spectrometry data. In specific, the data obtained with Matrix-Assisted Laser DesorptioMonization-Time of Flight (MALDI-TOF) technique are explored for balanced and unbalanced dataset scenarios, and compared with benchmarking machine learning algorithms (Naive Bayes, Support Vector Machine, Random Forest, and Logistic Regression). Finally, the evaluation of the performance of the proposed weighted ELM was realized in order to determine the most efficient technique in terms of predicting diseases. In the training phase, the weighted ELM reaches the 100% of accuracy, sensitivity and specificity, which are 25% and 30% higher than the rest of benchmarking machine learning algorithms. Meanwhile, in the testing phase results, the ELM observations highlight the scarce bias to predict positive and negative classes in unbalanced datasets.","PeriodicalId":167574,"journal":{"name":"2022 IEEE Colombian Conference on Communications and Computing (COLCOM)","volume":"161 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Extreme Learning Machine for Mass Spectrometry Data Analysis\",\"authors\":\"Mario Ulloa Orellana, Xaviera A. López-Cortés, David Zabala-Blanco, Pablo Palacios Játiva, Jayanta Datta\",\"doi\":\"10.1109/Colcom56784.2022.10107875\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we introduce the use of a weighted extreme learning machine (ELM) to give an automated predictive value to mass spectrometry data. In specific, the data obtained with Matrix-Assisted Laser DesorptioMonization-Time of Flight (MALDI-TOF) technique are explored for balanced and unbalanced dataset scenarios, and compared with benchmarking machine learning algorithms (Naive Bayes, Support Vector Machine, Random Forest, and Logistic Regression). Finally, the evaluation of the performance of the proposed weighted ELM was realized in order to determine the most efficient technique in terms of predicting diseases. In the training phase, the weighted ELM reaches the 100% of accuracy, sensitivity and specificity, which are 25% and 30% higher than the rest of benchmarking machine learning algorithms. Meanwhile, in the testing phase results, the ELM observations highlight the scarce bias to predict positive and negative classes in unbalanced datasets.\",\"PeriodicalId\":167574,\"journal\":{\"name\":\"2022 IEEE Colombian Conference on Communications and Computing (COLCOM)\",\"volume\":\"161 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE Colombian Conference on Communications and Computing (COLCOM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/Colcom56784.2022.10107875\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Colombian Conference on Communications and Computing (COLCOM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/Colcom56784.2022.10107875","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,我们引入了加权极值学习机(ELM)的使用,为质谱数据提供自动预测值。具体而言,利用矩阵辅助激光解析化飞行时间(MALDI-TOF)技术获得的数据在平衡和不平衡数据集场景下进行了探索,并与基准机器学习算法(朴素贝叶斯、支持向量机、随机森林和逻辑回归)进行了比较。最后,对所提出的加权ELM的性能进行了评价,以确定最有效的疾病预测技术。在训练阶段,加权ELM的准确率、灵敏度和特异性均达到100%,比其他基准机器学习算法分别提高25%和30%。同时,在测试阶段的结果中,ELM观测结果突出了在不平衡数据集中预测正类和负类的稀缺偏差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Extreme Learning Machine for Mass Spectrometry Data Analysis
In this work, we introduce the use of a weighted extreme learning machine (ELM) to give an automated predictive value to mass spectrometry data. In specific, the data obtained with Matrix-Assisted Laser DesorptioMonization-Time of Flight (MALDI-TOF) technique are explored for balanced and unbalanced dataset scenarios, and compared with benchmarking machine learning algorithms (Naive Bayes, Support Vector Machine, Random Forest, and Logistic Regression). Finally, the evaluation of the performance of the proposed weighted ELM was realized in order to determine the most efficient technique in terms of predicting diseases. In the training phase, the weighted ELM reaches the 100% of accuracy, sensitivity and specificity, which are 25% and 30% higher than the rest of benchmarking machine learning algorithms. Meanwhile, in the testing phase results, the ELM observations highlight the scarce bias to predict positive and negative classes in unbalanced datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信