R. Inoue, Hirofumi Nogami, E. Higurashi, R. Sawada
{"title":"一种新型的非常小的传感器,可以同时测量血流量和接触压力","authors":"R. Inoue, Hirofumi Nogami, E. Higurashi, R. Sawada","doi":"10.1109/OMN.2017.8051497","DOIUrl":null,"url":null,"abstract":"A number of laser Doppler blood flow sensors have been developed over the past few decades. However, they remain uncommon in practice. This is because the contact pressure between the skin and the sensor is not measured simultaneously with blood flow, despite the fact that blood flow is greatly affected by contact pressure. Thus, reliable and highly reproducible measurement of blood flow could not be realized. Therefore, we have developed a micro electro mechanical systems (MEMS) blood flow sensor which has a built-in pressure sensor, for reliable and highly reproducible measurement.","PeriodicalId":411243,"journal":{"name":"2017 International Conference on Optical MEMS and Nanophotonics (OMN)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A new extremely small sensor for measuring a blood flow and a contact pressure simultaneously\",\"authors\":\"R. Inoue, Hirofumi Nogami, E. Higurashi, R. Sawada\",\"doi\":\"10.1109/OMN.2017.8051497\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A number of laser Doppler blood flow sensors have been developed over the past few decades. However, they remain uncommon in practice. This is because the contact pressure between the skin and the sensor is not measured simultaneously with blood flow, despite the fact that blood flow is greatly affected by contact pressure. Thus, reliable and highly reproducible measurement of blood flow could not be realized. Therefore, we have developed a micro electro mechanical systems (MEMS) blood flow sensor which has a built-in pressure sensor, for reliable and highly reproducible measurement.\",\"PeriodicalId\":411243,\"journal\":{\"name\":\"2017 International Conference on Optical MEMS and Nanophotonics (OMN)\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 International Conference on Optical MEMS and Nanophotonics (OMN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/OMN.2017.8051497\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Optical MEMS and Nanophotonics (OMN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/OMN.2017.8051497","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A new extremely small sensor for measuring a blood flow and a contact pressure simultaneously
A number of laser Doppler blood flow sensors have been developed over the past few decades. However, they remain uncommon in practice. This is because the contact pressure between the skin and the sensor is not measured simultaneously with blood flow, despite the fact that blood flow is greatly affected by contact pressure. Thus, reliable and highly reproducible measurement of blood flow could not be realized. Therefore, we have developed a micro electro mechanical systems (MEMS) blood flow sensor which has a built-in pressure sensor, for reliable and highly reproducible measurement.