正在进行的工作:深度神经网络加速器的超快速而准确的性能预测

Konstantin Lübeck, Alexander Louis-Ferdinand Jung, Felix Wedlich, O. Bringmann
{"title":"正在进行的工作:深度神经网络加速器的超快速而准确的性能预测","authors":"Konstantin Lübeck, Alexander Louis-Ferdinand Jung, Felix Wedlich, O. Bringmann","doi":"10.1109/CASES55004.2022.00020","DOIUrl":null,"url":null,"abstract":"We present an automatic methodology to accurately predict the performance of Deep Neural Network (DNN) accelerators using abstract descriptions of accelerator architectures and DNNs with a high degree of flexibility. By mapping partially unrolled neural network layers onto accelerator architectures, we automatically construct an analytical performance model, exploiting the dataflow-driven nature of DNNs that allows us to evaluate only a few loop iterations to determine the performance of a whole DNN layer.","PeriodicalId":331181,"journal":{"name":"2022 International Conference on Compilers, Architecture, and Synthesis for Embedded Systems (CASES)","volume":"96 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Work-in-Progress: Ultra-fast yet Accurate Performance Prediction for Deep Neural Network Accelerators\",\"authors\":\"Konstantin Lübeck, Alexander Louis-Ferdinand Jung, Felix Wedlich, O. Bringmann\",\"doi\":\"10.1109/CASES55004.2022.00020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present an automatic methodology to accurately predict the performance of Deep Neural Network (DNN) accelerators using abstract descriptions of accelerator architectures and DNNs with a high degree of flexibility. By mapping partially unrolled neural network layers onto accelerator architectures, we automatically construct an analytical performance model, exploiting the dataflow-driven nature of DNNs that allows us to evaluate only a few loop iterations to determine the performance of a whole DNN layer.\",\"PeriodicalId\":331181,\"journal\":{\"name\":\"2022 International Conference on Compilers, Architecture, and Synthesis for Embedded Systems (CASES)\",\"volume\":\"96 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Conference on Compilers, Architecture, and Synthesis for Embedded Systems (CASES)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CASES55004.2022.00020\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Compilers, Architecture, and Synthesis for Embedded Systems (CASES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CASES55004.2022.00020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种自动方法来准确预测深度神经网络(DNN)加速器的性能,该方法使用了具有高度灵活性的加速器架构和DNN的抽象描述。通过将部分展开的神经网络层映射到加速器架构上,我们自动构建了一个分析性能模型,利用深度神经网络的数据流驱动特性,允许我们仅评估几个循环迭代来确定整个深度神经网络层的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Work-in-Progress: Ultra-fast yet Accurate Performance Prediction for Deep Neural Network Accelerators
We present an automatic methodology to accurately predict the performance of Deep Neural Network (DNN) accelerators using abstract descriptions of accelerator architectures and DNNs with a high degree of flexibility. By mapping partially unrolled neural network layers onto accelerator architectures, we automatically construct an analytical performance model, exploiting the dataflow-driven nature of DNNs that allows us to evaluate only a few loop iterations to determine the performance of a whole DNN layer.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信