S. Abdelaziz, Ahmed Emira, Ahmed G. Radwan, A. Mohieldin, Ahmed M. Soliman
{"title":"一种用于热电能量清除的低启动电压电荷泵","authors":"S. Abdelaziz, Ahmed Emira, Ahmed G. Radwan, A. Mohieldin, Ahmed M. Soliman","doi":"10.1109/ISIE.2011.5984135","DOIUrl":null,"url":null,"abstract":"In this paper, an ultra-low-voltage charge pump is presented. Two techniques are used to reduce required number of stages and improve power efficiency, namely clock boosting and Vt cancellation. Clock boosting is employed to increase the output voltage per stage resulting in lower number of stages, and hence smaller output resistance. Vt cancellation is achieved by using an auxiliary circuit that enables the charge pump to operate at input voltages as low as 300mV. Compared to conventional charge pump techniques, the proposed technique is shown to offer higher power efficiency and voltage gain. The charge pump is designed using TSMC 0.25µm CMOS technology.","PeriodicalId":162453,"journal":{"name":"2011 IEEE International Symposium on Industrial Electronics","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"A low start up voltage charge pump for thermoelectric energy scavenging\",\"authors\":\"S. Abdelaziz, Ahmed Emira, Ahmed G. Radwan, A. Mohieldin, Ahmed M. Soliman\",\"doi\":\"10.1109/ISIE.2011.5984135\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, an ultra-low-voltage charge pump is presented. Two techniques are used to reduce required number of stages and improve power efficiency, namely clock boosting and Vt cancellation. Clock boosting is employed to increase the output voltage per stage resulting in lower number of stages, and hence smaller output resistance. Vt cancellation is achieved by using an auxiliary circuit that enables the charge pump to operate at input voltages as low as 300mV. Compared to conventional charge pump techniques, the proposed technique is shown to offer higher power efficiency and voltage gain. The charge pump is designed using TSMC 0.25µm CMOS technology.\",\"PeriodicalId\":162453,\"journal\":{\"name\":\"2011 IEEE International Symposium on Industrial Electronics\",\"volume\":\"50 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE International Symposium on Industrial Electronics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIE.2011.5984135\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Symposium on Industrial Electronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIE.2011.5984135","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A low start up voltage charge pump for thermoelectric energy scavenging
In this paper, an ultra-low-voltage charge pump is presented. Two techniques are used to reduce required number of stages and improve power efficiency, namely clock boosting and Vt cancellation. Clock boosting is employed to increase the output voltage per stage resulting in lower number of stages, and hence smaller output resistance. Vt cancellation is achieved by using an auxiliary circuit that enables the charge pump to operate at input voltages as low as 300mV. Compared to conventional charge pump techniques, the proposed technique is shown to offer higher power efficiency and voltage gain. The charge pump is designed using TSMC 0.25µm CMOS technology.