Devanagari手写字符识别

Mayank Mishra, T. Choudhury, Tanmay Sarkar
{"title":"Devanagari手写字符识别","authors":"Mayank Mishra, T. Choudhury, Tanmay Sarkar","doi":"10.1109/INDISCON53343.2021.9582192","DOIUrl":null,"url":null,"abstract":"This paper aims to classify images of handwritten characters in the Devanagari script. We implement a ResNet architecture with 85 convolution layers to classify images on the publicly available Devanagari Handwritten Character Dataset (DHCD), that holds 92,000 images divided into 46 different classes. Our network implements the bottleneck variant of the residual module and executes the pre-activation method where the activation function and batch normalization are placed before the convolutions. This model outperforms previous works done to date on DHCD by recording an accuracy of 99.72%.","PeriodicalId":167849,"journal":{"name":"2021 IEEE India Council International Subsections Conference (INDISCON)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Devanagari Handwritten Character Recognition\",\"authors\":\"Mayank Mishra, T. Choudhury, Tanmay Sarkar\",\"doi\":\"10.1109/INDISCON53343.2021.9582192\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper aims to classify images of handwritten characters in the Devanagari script. We implement a ResNet architecture with 85 convolution layers to classify images on the publicly available Devanagari Handwritten Character Dataset (DHCD), that holds 92,000 images divided into 46 different classes. Our network implements the bottleneck variant of the residual module and executes the pre-activation method where the activation function and batch normalization are placed before the convolutions. This model outperforms previous works done to date on DHCD by recording an accuracy of 99.72%.\",\"PeriodicalId\":167849,\"journal\":{\"name\":\"2021 IEEE India Council International Subsections Conference (INDISCON)\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE India Council International Subsections Conference (INDISCON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INDISCON53343.2021.9582192\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE India Council International Subsections Conference (INDISCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INDISCON53343.2021.9582192","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文的目的是对Devanagari手写体文字的图像进行分类。我们实现了一个具有85个卷积层的ResNet架构,用于在公开可用的Devanagari手写字符数据集(DHCD)上对图像进行分类,该数据集包含92,000张图像,分为46个不同的类。我们的网络实现了残差模块的瓶颈变体,并执行了预激活方法,其中激活函数和批归一化被放置在卷积之前。该模型记录的准确率为99.72%,优于迄今为止在DHCD上完成的先前工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Devanagari Handwritten Character Recognition
This paper aims to classify images of handwritten characters in the Devanagari script. We implement a ResNet architecture with 85 convolution layers to classify images on the publicly available Devanagari Handwritten Character Dataset (DHCD), that holds 92,000 images divided into 46 different classes. Our network implements the bottleneck variant of the residual module and executes the pre-activation method where the activation function and batch normalization are placed before the convolutions. This model outperforms previous works done to date on DHCD by recording an accuracy of 99.72%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信