一种基于距离修正的模糊C均值算法用于图像分割

Naixiang Li, Peng Guo
{"title":"一种基于距离修正的模糊C均值算法用于图像分割","authors":"Naixiang Li, Peng Guo","doi":"10.1109/FSKD.2013.6816188","DOIUrl":null,"url":null,"abstract":"A novel Fuzzy c Means(FCM) algorithm with modified distance computation is proposed in this paper. We modify the distance in FCM with the neighborhood information of cluster centers. The distance in FCM is composed of the Euclidean distance and a characteristic distance, and the characteristic distance is calculated with a pixel center window and tuned with a coefficient. The Gamma function is selected to generate coefficients in our works. Experimental results show high performance of our approach.","PeriodicalId":368964,"journal":{"name":"2013 10th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A novel Fuzzy C Means algorithm based on distance modification for image segmentation\",\"authors\":\"Naixiang Li, Peng Guo\",\"doi\":\"10.1109/FSKD.2013.6816188\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A novel Fuzzy c Means(FCM) algorithm with modified distance computation is proposed in this paper. We modify the distance in FCM with the neighborhood information of cluster centers. The distance in FCM is composed of the Euclidean distance and a characteristic distance, and the characteristic distance is calculated with a pixel center window and tuned with a coefficient. The Gamma function is selected to generate coefficients in our works. Experimental results show high performance of our approach.\",\"PeriodicalId\":368964,\"journal\":{\"name\":\"2013 10th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD)\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 10th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FSKD.2013.6816188\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 10th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FSKD.2013.6816188","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

提出了一种改进距离计算的模糊c均值(FCM)算法。我们利用聚类中心的邻域信息来修正FCM中的距离。FCM中的距离由欧几里得距离和特征距离组成,特征距离用像素中心窗口计算,并用系数进行调谐。在我们的作品中选择Gamma函数来生成系数。实验结果表明,该方法具有良好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A novel Fuzzy C Means algorithm based on distance modification for image segmentation
A novel Fuzzy c Means(FCM) algorithm with modified distance computation is proposed in this paper. We modify the distance in FCM with the neighborhood information of cluster centers. The distance in FCM is composed of the Euclidean distance and a characteristic distance, and the characteristic distance is calculated with a pixel center window and tuned with a coefficient. The Gamma function is selected to generate coefficients in our works. Experimental results show high performance of our approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信