实现加拿大制造业及其他行业能源消耗的二氧化碳排放目标;使用混合优化模型

Arash Marzi, E. Marzi, H. Marzi
{"title":"实现加拿大制造业及其他行业能源消耗的二氧化碳排放目标;使用混合优化模型","authors":"Arash Marzi, E. Marzi, H. Marzi","doi":"10.1109/IJCNN.2013.6706881","DOIUrl":null,"url":null,"abstract":"Due to sporadic climate change and global warming, world have signed international protocols promising to reduce their nation's emissions. This study focuses on the application of the bees algorithm, embedded with an artificial neural network, to determine practical yearly reductions for minimizing oil, natural gas, and coal emissions as by-products of energy consumption in Canada's manufacturing sector based on the Copenhagen Targets for Canada for 2020.","PeriodicalId":393869,"journal":{"name":"2010 IEEE Electrical Power & Energy Conference","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Achieving CO2 emission targets for energy consumption at Canadian manufacturing and beyond; using Hybrid Optimization Model\",\"authors\":\"Arash Marzi, E. Marzi, H. Marzi\",\"doi\":\"10.1109/IJCNN.2013.6706881\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Due to sporadic climate change and global warming, world have signed international protocols promising to reduce their nation's emissions. This study focuses on the application of the bees algorithm, embedded with an artificial neural network, to determine practical yearly reductions for minimizing oil, natural gas, and coal emissions as by-products of energy consumption in Canada's manufacturing sector based on the Copenhagen Targets for Canada for 2020.\",\"PeriodicalId\":393869,\"journal\":{\"name\":\"2010 IEEE Electrical Power & Energy Conference\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE Electrical Power & Energy Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCNN.2013.6706881\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE Electrical Power & Energy Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2013.6706881","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

由于零星的气候变化和全球变暖,世界各国都签署了承诺减少本国排放的国际协议。本研究的重点是应用嵌入人工神经网络的蜜蜂算法,根据加拿大2020年的哥本哈根目标,确定加拿大制造业能源消耗副产品石油、天然气和煤炭排放的实际年减量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Achieving CO2 emission targets for energy consumption at Canadian manufacturing and beyond; using Hybrid Optimization Model
Due to sporadic climate change and global warming, world have signed international protocols promising to reduce their nation's emissions. This study focuses on the application of the bees algorithm, embedded with an artificial neural network, to determine practical yearly reductions for minimizing oil, natural gas, and coal emissions as by-products of energy consumption in Canada's manufacturing sector based on the Copenhagen Targets for Canada for 2020.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信