Soujanya Poria, Alexander Gelbukh, E. Cambria, Peipei Yang, A. Hussain, T. Durrani
{"title":"合并SenticNet和WordNet-Affect情感列表进行情感分析","authors":"Soujanya Poria, Alexander Gelbukh, E. Cambria, Peipei Yang, A. Hussain, T. Durrani","doi":"10.1109/ICOSP.2012.6491803","DOIUrl":null,"url":null,"abstract":"SenticNet is currently one of the most comprehensive freely available semantic resources for opinion mining. However, it only provides numerical polarity scores, while more detailed sentiment-related information for its concepts is often desirable. Another important resource for opinion mining and sentiment analysis is WordNet-Affect, which in turn lacks quantitative information. We report a work on automatically merging these two resources by assigning emotion labels to more than 2700 concepts.","PeriodicalId":143331,"journal":{"name":"2012 IEEE 11th International Conference on Signal Processing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"95","resultStr":"{\"title\":\"Merging SenticNet and WordNet-Affect emotion lists for sentiment analysis\",\"authors\":\"Soujanya Poria, Alexander Gelbukh, E. Cambria, Peipei Yang, A. Hussain, T. Durrani\",\"doi\":\"10.1109/ICOSP.2012.6491803\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SenticNet is currently one of the most comprehensive freely available semantic resources for opinion mining. However, it only provides numerical polarity scores, while more detailed sentiment-related information for its concepts is often desirable. Another important resource for opinion mining and sentiment analysis is WordNet-Affect, which in turn lacks quantitative information. We report a work on automatically merging these two resources by assigning emotion labels to more than 2700 concepts.\",\"PeriodicalId\":143331,\"journal\":{\"name\":\"2012 IEEE 11th International Conference on Signal Processing\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"95\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE 11th International Conference on Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICOSP.2012.6491803\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE 11th International Conference on Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOSP.2012.6491803","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Merging SenticNet and WordNet-Affect emotion lists for sentiment analysis
SenticNet is currently one of the most comprehensive freely available semantic resources for opinion mining. However, it only provides numerical polarity scores, while more detailed sentiment-related information for its concepts is often desirable. Another important resource for opinion mining and sentiment analysis is WordNet-Affect, which in turn lacks quantitative information. We report a work on automatically merging these two resources by assigning emotion labels to more than 2700 concepts.