T. Abaya, M. Diwekar, S. Blair, P. Tathireddy, L. Rieth, F. Solzbacher
{"title":"用于深层组织光传输的植入式玻璃电极","authors":"T. Abaya, M. Diwekar, S. Blair, P. Tathireddy, L. Rieth, F. Solzbacher","doi":"10.1109/OMN.2014.6924573","DOIUrl":null,"url":null,"abstract":"3D needle-type glass waveguide arrays were developed as potentially compact neural interfaces for light delivery in deep-tissue. As much as 90% of input light is transmitted via a single optrode to depths >1mm in tissue. Light emission profiles from the optrode tips into tissue can exhibit beam widths of 70-150 μm and full-angle divergence ranging from 13-40°. These beam characteristics may be able to satisfy a wide range of requirements for targeted illumination in neural stimulation.","PeriodicalId":161791,"journal":{"name":"2014 International Conference on Optical MEMS and Nanophotonics","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Implantable glass optrodes for deep-tissue light delivery\",\"authors\":\"T. Abaya, M. Diwekar, S. Blair, P. Tathireddy, L. Rieth, F. Solzbacher\",\"doi\":\"10.1109/OMN.2014.6924573\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"3D needle-type glass waveguide arrays were developed as potentially compact neural interfaces for light delivery in deep-tissue. As much as 90% of input light is transmitted via a single optrode to depths >1mm in tissue. Light emission profiles from the optrode tips into tissue can exhibit beam widths of 70-150 μm and full-angle divergence ranging from 13-40°. These beam characteristics may be able to satisfy a wide range of requirements for targeted illumination in neural stimulation.\",\"PeriodicalId\":161791,\"journal\":{\"name\":\"2014 International Conference on Optical MEMS and Nanophotonics\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 International Conference on Optical MEMS and Nanophotonics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/OMN.2014.6924573\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Optical MEMS and Nanophotonics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/OMN.2014.6924573","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Implantable glass optrodes for deep-tissue light delivery
3D needle-type glass waveguide arrays were developed as potentially compact neural interfaces for light delivery in deep-tissue. As much as 90% of input light is transmitted via a single optrode to depths >1mm in tissue. Light emission profiles from the optrode tips into tissue can exhibit beam widths of 70-150 μm and full-angle divergence ranging from 13-40°. These beam characteristics may be able to satisfy a wide range of requirements for targeted illumination in neural stimulation.