{"title":"亚180nm互连性能优化中的功耗问题","authors":"K. Banerjee, A. Mehrotra","doi":"10.1109/VLSIC.2002.1015029","DOIUrl":null,"url":null,"abstract":"This paper addresses the problem of power dissipation during the buffer insertion phase of interconnect performance optimization. It is shown that the interconnect delay is actually very shallow with respect to both the repeater size and separation close to the minimum point. A methodology is developed to calculate the repeater size and inter-buffer interconnect length which minimizes the total interconnect power dissipation for any given delay penalty. This methodology is used to calculate the power-optimal buffering schemes for various ITRS technology nodes for 5% delay penalty. Furthermore, this technique is also used to quantify the relative importance of the various components of the power dissipation for power-optimal solutions for various technology nodes.","PeriodicalId":162493,"journal":{"name":"2002 Symposium on VLSI Circuits. Digest of Technical Papers (Cat. No.02CH37302)","volume":"126 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Power dissipation issues in interconnect performance optimization for sub-180 nm designs\",\"authors\":\"K. Banerjee, A. Mehrotra\",\"doi\":\"10.1109/VLSIC.2002.1015029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper addresses the problem of power dissipation during the buffer insertion phase of interconnect performance optimization. It is shown that the interconnect delay is actually very shallow with respect to both the repeater size and separation close to the minimum point. A methodology is developed to calculate the repeater size and inter-buffer interconnect length which minimizes the total interconnect power dissipation for any given delay penalty. This methodology is used to calculate the power-optimal buffering schemes for various ITRS technology nodes for 5% delay penalty. Furthermore, this technique is also used to quantify the relative importance of the various components of the power dissipation for power-optimal solutions for various technology nodes.\",\"PeriodicalId\":162493,\"journal\":{\"name\":\"2002 Symposium on VLSI Circuits. Digest of Technical Papers (Cat. No.02CH37302)\",\"volume\":\"126 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2002 Symposium on VLSI Circuits. Digest of Technical Papers (Cat. No.02CH37302)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VLSIC.2002.1015029\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2002 Symposium on VLSI Circuits. Digest of Technical Papers (Cat. No.02CH37302)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VLSIC.2002.1015029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Power dissipation issues in interconnect performance optimization for sub-180 nm designs
This paper addresses the problem of power dissipation during the buffer insertion phase of interconnect performance optimization. It is shown that the interconnect delay is actually very shallow with respect to both the repeater size and separation close to the minimum point. A methodology is developed to calculate the repeater size and inter-buffer interconnect length which minimizes the total interconnect power dissipation for any given delay penalty. This methodology is used to calculate the power-optimal buffering schemes for various ITRS technology nodes for 5% delay penalty. Furthermore, this technique is also used to quantify the relative importance of the various components of the power dissipation for power-optimal solutions for various technology nodes.