Yutong Chen, Lei Yang, Haoran Zhang, Zheng Zhao, Minghua Hu
{"title":"受限空域实时自主轨迹冲突检测与解决","authors":"Yutong Chen, Lei Yang, Haoran Zhang, Zheng Zhao, Minghua Hu","doi":"10.1109/ICNS50378.2020.9223004","DOIUrl":null,"url":null,"abstract":"Aiming at achieving the autonomous Air Traffic Management (ATM) in the Trajectory-Based Operation (TBO) context, a two-stage real-time autonomous four-dimensional trajectory conflict detection and resolution method in restricted Free Route Airspace (FRA) supporting the synchronized air-ground situational awareness was proposed. Cellular concept was used for airspace discretization to balance the accuracy and computation cost. At stage one, the desired trajectory for each upcoming flight is generated by searching a path in a network constructed based on the entry and exit point, as well as boundary points of each restricted area inside the airspace. At stage two, in order to avoid conflict during travelling, the Space-Time Prism model, which is capable of visualizing the conflict situation for both controllers and pilots, is introduced to generate the feasible conflict-free trajectories while keeping the Controlled Time of Arrival (CTA) in mind. A case study based on a typical en route sector in Western China was carried out to test the effectiveness of the proposed method. In the end, sensitivity of cell size was investigated in terms of computational cost and operational efficiency. Results showed that the proposed autonomous trajectory planning would be a promising solution for future autonomous ATM system.","PeriodicalId":424869,"journal":{"name":"2020 Integrated Communications Navigation and Surveillance Conference (ICNS)","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Real-Time Autonomous Trajectory Conflict Detection and Resolution in Restricted Airspace\",\"authors\":\"Yutong Chen, Lei Yang, Haoran Zhang, Zheng Zhao, Minghua Hu\",\"doi\":\"10.1109/ICNS50378.2020.9223004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aiming at achieving the autonomous Air Traffic Management (ATM) in the Trajectory-Based Operation (TBO) context, a two-stage real-time autonomous four-dimensional trajectory conflict detection and resolution method in restricted Free Route Airspace (FRA) supporting the synchronized air-ground situational awareness was proposed. Cellular concept was used for airspace discretization to balance the accuracy and computation cost. At stage one, the desired trajectory for each upcoming flight is generated by searching a path in a network constructed based on the entry and exit point, as well as boundary points of each restricted area inside the airspace. At stage two, in order to avoid conflict during travelling, the Space-Time Prism model, which is capable of visualizing the conflict situation for both controllers and pilots, is introduced to generate the feasible conflict-free trajectories while keeping the Controlled Time of Arrival (CTA) in mind. A case study based on a typical en route sector in Western China was carried out to test the effectiveness of the proposed method. In the end, sensitivity of cell size was investigated in terms of computational cost and operational efficiency. Results showed that the proposed autonomous trajectory planning would be a promising solution for future autonomous ATM system.\",\"PeriodicalId\":424869,\"journal\":{\"name\":\"2020 Integrated Communications Navigation and Surveillance Conference (ICNS)\",\"volume\":\"61 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 Integrated Communications Navigation and Surveillance Conference (ICNS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICNS50378.2020.9223004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Integrated Communications Navigation and Surveillance Conference (ICNS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNS50378.2020.9223004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Real-Time Autonomous Trajectory Conflict Detection and Resolution in Restricted Airspace
Aiming at achieving the autonomous Air Traffic Management (ATM) in the Trajectory-Based Operation (TBO) context, a two-stage real-time autonomous four-dimensional trajectory conflict detection and resolution method in restricted Free Route Airspace (FRA) supporting the synchronized air-ground situational awareness was proposed. Cellular concept was used for airspace discretization to balance the accuracy and computation cost. At stage one, the desired trajectory for each upcoming flight is generated by searching a path in a network constructed based on the entry and exit point, as well as boundary points of each restricted area inside the airspace. At stage two, in order to avoid conflict during travelling, the Space-Time Prism model, which is capable of visualizing the conflict situation for both controllers and pilots, is introduced to generate the feasible conflict-free trajectories while keeping the Controlled Time of Arrival (CTA) in mind. A case study based on a typical en route sector in Western China was carried out to test the effectiveness of the proposed method. In the end, sensitivity of cell size was investigated in terms of computational cost and operational efficiency. Results showed that the proposed autonomous trajectory planning would be a promising solution for future autonomous ATM system.