C. Ansótegui, Miquel Bofill, F. Manyà, Mateu Villaret
{"title":"用线性整数算法扩展多值子句形式","authors":"C. Ansótegui, Miquel Bofill, F. Manyà, Mateu Villaret","doi":"10.1109/ISMVL.2011.53","DOIUrl":null,"url":null,"abstract":"We extend the language of signed many-valued clausal forms with linear integer arithmetic constraints. In this way, we get a simple modeling language in which a wide range of practical combinatorial problems admit compact and natural encodings. We then define efficient translations from our language into the SAT and SMT formalism, and propose to use SAT and SMT solvers for finding solutions.","PeriodicalId":234611,"journal":{"name":"2011 41st IEEE International Symposium on Multiple-Valued Logic","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Extending Multiple-Valued Clausal Forms with Linear Integer Arithmetic\",\"authors\":\"C. Ansótegui, Miquel Bofill, F. Manyà, Mateu Villaret\",\"doi\":\"10.1109/ISMVL.2011.53\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We extend the language of signed many-valued clausal forms with linear integer arithmetic constraints. In this way, we get a simple modeling language in which a wide range of practical combinatorial problems admit compact and natural encodings. We then define efficient translations from our language into the SAT and SMT formalism, and propose to use SAT and SMT solvers for finding solutions.\",\"PeriodicalId\":234611,\"journal\":{\"name\":\"2011 41st IEEE International Symposium on Multiple-Valued Logic\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 41st IEEE International Symposium on Multiple-Valued Logic\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISMVL.2011.53\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 41st IEEE International Symposium on Multiple-Valued Logic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISMVL.2011.53","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Extending Multiple-Valued Clausal Forms with Linear Integer Arithmetic
We extend the language of signed many-valued clausal forms with linear integer arithmetic constraints. In this way, we get a simple modeling language in which a wide range of practical combinatorial problems admit compact and natural encodings. We then define efficient translations from our language into the SAT and SMT formalism, and propose to use SAT and SMT solvers for finding solutions.