用线性整数算法扩展多值子句形式

C. Ansótegui, Miquel Bofill, F. Manyà, Mateu Villaret
{"title":"用线性整数算法扩展多值子句形式","authors":"C. Ansótegui, Miquel Bofill, F. Manyà, Mateu Villaret","doi":"10.1109/ISMVL.2011.53","DOIUrl":null,"url":null,"abstract":"We extend the language of signed many-valued clausal forms with linear integer arithmetic constraints. In this way, we get a simple modeling language in which a wide range of practical combinatorial problems admit compact and natural encodings. We then define efficient translations from our language into the SAT and SMT formalism, and propose to use SAT and SMT solvers for finding solutions.","PeriodicalId":234611,"journal":{"name":"2011 41st IEEE International Symposium on Multiple-Valued Logic","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Extending Multiple-Valued Clausal Forms with Linear Integer Arithmetic\",\"authors\":\"C. Ansótegui, Miquel Bofill, F. Manyà, Mateu Villaret\",\"doi\":\"10.1109/ISMVL.2011.53\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We extend the language of signed many-valued clausal forms with linear integer arithmetic constraints. In this way, we get a simple modeling language in which a wide range of practical combinatorial problems admit compact and natural encodings. We then define efficient translations from our language into the SAT and SMT formalism, and propose to use SAT and SMT solvers for finding solutions.\",\"PeriodicalId\":234611,\"journal\":{\"name\":\"2011 41st IEEE International Symposium on Multiple-Valued Logic\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 41st IEEE International Symposium on Multiple-Valued Logic\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISMVL.2011.53\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 41st IEEE International Symposium on Multiple-Valued Logic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISMVL.2011.53","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

我们用线性整数算术约束扩展了有符号多值子句形式的语言。通过这种方式,我们得到了一种简单的建模语言,其中广泛的实际组合问题允许紧凑和自然的编码。然后,我们定义了从我们的语言到SAT和SMT形式的有效翻译,并建议使用SAT和SMT求解器来寻找解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Extending Multiple-Valued Clausal Forms with Linear Integer Arithmetic
We extend the language of signed many-valued clausal forms with linear integer arithmetic constraints. In this way, we get a simple modeling language in which a wide range of practical combinatorial problems admit compact and natural encodings. We then define efficient translations from our language into the SAT and SMT formalism, and propose to use SAT and SMT solvers for finding solutions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信