计算机作为新颖的数学现实。哥德巴赫问题

N. Vavilov
{"title":"计算机作为新颖的数学现实。哥德巴赫问题","authors":"N. Vavilov","doi":"10.32603/2071-2340-2021-4-5-71","DOIUrl":null,"url":null,"abstract":"In this part I pursue the discussion of the role of computers in additive number theroy. Here I sketch the definitive solution of the ternary = odd Goldbach problem, not in one of its XX century asymptotric reformulations, but in its original XVII century form. Namely, that every odd number n > 5 is a sum n = p1 + p2 + p3 of three positive rational primes. A solution of this problem was only completed by Harald Helfgott in 2013–2014 and there is no chance that it could be obtained without the use of computers. Apart from that, I discuss the status of the binary = even Goldbach problem, partial results towards its solution, as well as some further related proiblems.","PeriodicalId":319537,"journal":{"name":"Computer Tools in Education","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Computers as Novel Mathematical Reality. IV. Goldbach Problem\",\"authors\":\"N. Vavilov\",\"doi\":\"10.32603/2071-2340-2021-4-5-71\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this part I pursue the discussion of the role of computers in additive number theroy. Here I sketch the definitive solution of the ternary = odd Goldbach problem, not in one of its XX century asymptotric reformulations, but in its original XVII century form. Namely, that every odd number n > 5 is a sum n = p1 + p2 + p3 of three positive rational primes. A solution of this problem was only completed by Harald Helfgott in 2013–2014 and there is no chance that it could be obtained without the use of computers. Apart from that, I discuss the status of the binary = even Goldbach problem, partial results towards its solution, as well as some further related proiblems.\",\"PeriodicalId\":319537,\"journal\":{\"name\":\"Computer Tools in Education\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Tools in Education\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32603/2071-2340-2021-4-5-71\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Tools in Education","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32603/2071-2340-2021-4-5-71","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在这一部分中,我继续讨论计算机在加性数论中的作用。在这里,我概述了三元=奇哥德巴赫问题的最终解,不是用二十世纪的渐近重新表述,而是用十七世纪的原始形式。也就是说,每一个奇数n > 5都是三个正有理数n = p1 + p2 + p3的和。这个问题的解决方案是由Harald Helfgott在2013-2014年完成的,不使用计算机是不可能得到的。除此之外,我还讨论了二进制=偶数哥德巴赫问题的现状,对其解决的部分结果,以及一些进一步的相关问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Computers as Novel Mathematical Reality. IV. Goldbach Problem
In this part I pursue the discussion of the role of computers in additive number theroy. Here I sketch the definitive solution of the ternary = odd Goldbach problem, not in one of its XX century asymptotric reformulations, but in its original XVII century form. Namely, that every odd number n > 5 is a sum n = p1 + p2 + p3 of three positive rational primes. A solution of this problem was only completed by Harald Helfgott in 2013–2014 and there is no chance that it could be obtained without the use of computers. Apart from that, I discuss the status of the binary = even Goldbach problem, partial results towards its solution, as well as some further related proiblems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信