一种新的CRM稳健分类方法

Xiaoyu Li, Changzheng He, P. Liatsis
{"title":"一种新的CRM稳健分类方法","authors":"Xiaoyu Li, Changzheng He, P. Liatsis","doi":"10.1109/APWCS.2010.25","DOIUrl":null,"url":null,"abstract":"Customer classification is a key step in customer relationship management (CRM), and there are many methods used for it, such as Neural Net, association rules, SOM model, etc. However, most existing methods don’t take noise which is very common in reality into consideration. In this paper, we combine Croup Method of Data Handling (GMDH) with Takagi and Sugeno fuzzy model (TS) to form a new classification method TS-GMDH. The experimental result shows that TS-GMDH outperforms the benchmark classifiers when the noise level is high.","PeriodicalId":354322,"journal":{"name":"2010 Asia-Pacific Conference on Wearable Computing Systems","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A New Robust Classification Method for CRM\",\"authors\":\"Xiaoyu Li, Changzheng He, P. Liatsis\",\"doi\":\"10.1109/APWCS.2010.25\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Customer classification is a key step in customer relationship management (CRM), and there are many methods used for it, such as Neural Net, association rules, SOM model, etc. However, most existing methods don’t take noise which is very common in reality into consideration. In this paper, we combine Croup Method of Data Handling (GMDH) with Takagi and Sugeno fuzzy model (TS) to form a new classification method TS-GMDH. The experimental result shows that TS-GMDH outperforms the benchmark classifiers when the noise level is high.\",\"PeriodicalId\":354322,\"journal\":{\"name\":\"2010 Asia-Pacific Conference on Wearable Computing Systems\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 Asia-Pacific Conference on Wearable Computing Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APWCS.2010.25\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Asia-Pacific Conference on Wearable Computing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APWCS.2010.25","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

客户分类是客户关系管理(CRM)的关键步骤,目前有许多方法用于客户分类,如神经网络、关联规则、SOM模型等。然而,大多数现有的方法都没有考虑到现实中非常常见的噪声。本文将分组数据处理方法(GMDH)与Takagi和Sugeno模糊模型(TS)相结合,形成了一种新的分类方法TS-GMDH。实验结果表明,当噪声水平较高时,TS-GMDH分类器的性能优于基准分类器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A New Robust Classification Method for CRM
Customer classification is a key step in customer relationship management (CRM), and there are many methods used for it, such as Neural Net, association rules, SOM model, etc. However, most existing methods don’t take noise which is very common in reality into consideration. In this paper, we combine Croup Method of Data Handling (GMDH) with Takagi and Sugeno fuzzy model (TS) to form a new classification method TS-GMDH. The experimental result shows that TS-GMDH outperforms the benchmark classifiers when the noise level is high.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信