Giuseppe Napolano, Claudio Vela, A. Nocerino, R. Opromolla, M. Grassi, Salvatore Amoruso, G. Donfrancesco
{"title":"立方体卫星视觉激光相对导航模块的实验评估","authors":"Giuseppe Napolano, Claudio Vela, A. Nocerino, R. Opromolla, M. Grassi, Salvatore Amoruso, G. Donfrancesco","doi":"10.1109/MetroAeroSpace57412.2023.10189939","DOIUrl":null,"url":null,"abstract":"This paper presents the Hardware-In-The-Loop testing of a multi-sensor relative navigation module enabling close-proximity operations toward passively cooperative space targets in the frame of On-Orbit Servicing missions. The module, which is designed according to the CubeSat standard to occupy two CubeSat units, consists of a monocular camera and a wide-field-of-view laser range finder, and exploits a sensor fusion logic to provide relative position and attitude (pose) estimates. A laboratory setup is conceived and realized to characterize the pose estimation performance of the module by providing a highly accurate benchmark. Experimental tests show that the module is able to measure its relative position and attitude with respect to a target at operative distances below 2 meters with millimeter and tenths-of-degree level accuracy, respectively. Further tests on a larger-scale trajectory in an uncontrolled environment (in terms of illumination conditions and reference pose solution) demonstrate the capability to perform pose estimation up to operative distances of about 9 meters from the target, keeping reprojection errors at sub-centimeter level, and collecting reliable range finder measurements up to 30 m.","PeriodicalId":153093,"journal":{"name":"2023 IEEE 10th International Workshop on Metrology for AeroSpace (MetroAeroSpace)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental Assessment of a Visual-Laser Relative Navigation Module for CubeSats\",\"authors\":\"Giuseppe Napolano, Claudio Vela, A. Nocerino, R. Opromolla, M. Grassi, Salvatore Amoruso, G. Donfrancesco\",\"doi\":\"10.1109/MetroAeroSpace57412.2023.10189939\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents the Hardware-In-The-Loop testing of a multi-sensor relative navigation module enabling close-proximity operations toward passively cooperative space targets in the frame of On-Orbit Servicing missions. The module, which is designed according to the CubeSat standard to occupy two CubeSat units, consists of a monocular camera and a wide-field-of-view laser range finder, and exploits a sensor fusion logic to provide relative position and attitude (pose) estimates. A laboratory setup is conceived and realized to characterize the pose estimation performance of the module by providing a highly accurate benchmark. Experimental tests show that the module is able to measure its relative position and attitude with respect to a target at operative distances below 2 meters with millimeter and tenths-of-degree level accuracy, respectively. Further tests on a larger-scale trajectory in an uncontrolled environment (in terms of illumination conditions and reference pose solution) demonstrate the capability to perform pose estimation up to operative distances of about 9 meters from the target, keeping reprojection errors at sub-centimeter level, and collecting reliable range finder measurements up to 30 m.\",\"PeriodicalId\":153093,\"journal\":{\"name\":\"2023 IEEE 10th International Workshop on Metrology for AeroSpace (MetroAeroSpace)\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE 10th International Workshop on Metrology for AeroSpace (MetroAeroSpace)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MetroAeroSpace57412.2023.10189939\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE 10th International Workshop on Metrology for AeroSpace (MetroAeroSpace)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MetroAeroSpace57412.2023.10189939","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Experimental Assessment of a Visual-Laser Relative Navigation Module for CubeSats
This paper presents the Hardware-In-The-Loop testing of a multi-sensor relative navigation module enabling close-proximity operations toward passively cooperative space targets in the frame of On-Orbit Servicing missions. The module, which is designed according to the CubeSat standard to occupy two CubeSat units, consists of a monocular camera and a wide-field-of-view laser range finder, and exploits a sensor fusion logic to provide relative position and attitude (pose) estimates. A laboratory setup is conceived and realized to characterize the pose estimation performance of the module by providing a highly accurate benchmark. Experimental tests show that the module is able to measure its relative position and attitude with respect to a target at operative distances below 2 meters with millimeter and tenths-of-degree level accuracy, respectively. Further tests on a larger-scale trajectory in an uncontrolled environment (in terms of illumination conditions and reference pose solution) demonstrate the capability to perform pose estimation up to operative distances of about 9 meters from the target, keeping reprojection errors at sub-centimeter level, and collecting reliable range finder measurements up to 30 m.