∈归一化符号回归最小平均四次方(NSRLMF)自适应算法

Mohammed Mujahid Ulla Faiz, A. Zerguine
{"title":"∈归一化符号回归最小平均四次方(NSRLMF)自适应算法","authors":"Mohammed Mujahid Ulla Faiz, A. Zerguine","doi":"10.1109/ISSPA.2012.6310571","DOIUrl":null,"url":null,"abstract":"In this paper, a new algorithm, the ϵ-normalized sign regressor least mean fourth (NSRLMF) algorithm is presented as a substitute for the ϵ-normalized least mean fourth (NLMF) algorithm. This new algorithm reduces significantly the computational load. Moreover, the proposed algorithm has similar convergence properties as those of the ϵ-NLMF algorithm. Finally, simulations corroborate very well the theoretical findings.","PeriodicalId":248763,"journal":{"name":"2012 11th International Conference on Information Science, Signal Processing and their Applications (ISSPA)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"The ∈-normalized sign regressor least mean fourth (NSRLMF) adaptive algorithm\",\"authors\":\"Mohammed Mujahid Ulla Faiz, A. Zerguine\",\"doi\":\"10.1109/ISSPA.2012.6310571\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a new algorithm, the ϵ-normalized sign regressor least mean fourth (NSRLMF) algorithm is presented as a substitute for the ϵ-normalized least mean fourth (NLMF) algorithm. This new algorithm reduces significantly the computational load. Moreover, the proposed algorithm has similar convergence properties as those of the ϵ-NLMF algorithm. Finally, simulations corroborate very well the theoretical findings.\",\"PeriodicalId\":248763,\"journal\":{\"name\":\"2012 11th International Conference on Information Science, Signal Processing and their Applications (ISSPA)\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 11th International Conference on Information Science, Signal Processing and their Applications (ISSPA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSPA.2012.6310571\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 11th International Conference on Information Science, Signal Processing and their Applications (ISSPA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSPA.2012.6310571","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文提出了一种新的算法,ϵ-normalized符号回归最小平均四分率(NSRLMF)算法来替代ϵ-normalized最小平均四分率(NLMF)算法。该算法显著降低了计算量。此外,该算法与ϵ-NLMF算法具有相似的收敛性。最后,模拟结果很好地证实了理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The ∈-normalized sign regressor least mean fourth (NSRLMF) adaptive algorithm
In this paper, a new algorithm, the ϵ-normalized sign regressor least mean fourth (NSRLMF) algorithm is presented as a substitute for the ϵ-normalized least mean fourth (NLMF) algorithm. This new algorithm reduces significantly the computational load. Moreover, the proposed algorithm has similar convergence properties as those of the ϵ-NLMF algorithm. Finally, simulations corroborate very well the theoretical findings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信