一种改进的变步长连续混合p-范数系统辨识算法

Ansuman Patnaik, S. Nanda
{"title":"一种改进的变步长连续混合p-范数系统辨识算法","authors":"Ansuman Patnaik, S. Nanda","doi":"10.1109/AESPC44649.2018.9033179","DOIUrl":null,"url":null,"abstract":"A modified variable step-size continuous mixed -norm (MVSS-CMPN) algorithm is introduced for system identification. The proposed algorithm is applied to serial input serial output (SISO) and auto regressive moving average (ARMA) systems in the presence of impulsive noise. The standard variable step-size continuous mixed p-norm (VSS-CMPN) algorithm employs a uniform weighting function λn(p) whose value is assumed as one for the calculation of the variable step size, which makes the algorithm parameter dependent. To act on this constraint, a modified VSS-CMPN (MVSS-CMPN) algorithm is introduced where a time-varying weighting function is used in order to avoid the dependence of algorithm on predefined parameters controlling its proportionality and initialisation. From the simulation results, it is shown that the mean square error of the proposed MVSS-CMPN algorithm attains a better steady state and converges faster due to impulsive noise interference.","PeriodicalId":222759,"journal":{"name":"2018 International Conference on Applied Electromagnetics, Signal Processing and Communication (AESPC)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A Modified Variable Step-Size Continuous Mixed p-Norm Algorithm for System Identification\",\"authors\":\"Ansuman Patnaik, S. Nanda\",\"doi\":\"10.1109/AESPC44649.2018.9033179\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A modified variable step-size continuous mixed -norm (MVSS-CMPN) algorithm is introduced for system identification. The proposed algorithm is applied to serial input serial output (SISO) and auto regressive moving average (ARMA) systems in the presence of impulsive noise. The standard variable step-size continuous mixed p-norm (VSS-CMPN) algorithm employs a uniform weighting function λn(p) whose value is assumed as one for the calculation of the variable step size, which makes the algorithm parameter dependent. To act on this constraint, a modified VSS-CMPN (MVSS-CMPN) algorithm is introduced where a time-varying weighting function is used in order to avoid the dependence of algorithm on predefined parameters controlling its proportionality and initialisation. From the simulation results, it is shown that the mean square error of the proposed MVSS-CMPN algorithm attains a better steady state and converges faster due to impulsive noise interference.\",\"PeriodicalId\":222759,\"journal\":{\"name\":\"2018 International Conference on Applied Electromagnetics, Signal Processing and Communication (AESPC)\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 International Conference on Applied Electromagnetics, Signal Processing and Communication (AESPC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AESPC44649.2018.9033179\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Applied Electromagnetics, Signal Processing and Communication (AESPC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AESPC44649.2018.9033179","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

提出了一种改进的变步长连续混合范数(MVSS-CMPN)算法用于系统辨识。该算法应用于存在脉冲噪声的串行输入串行输出(SISO)和自回归移动平均(ARMA)系统。标准变步长连续混合p-范数(VSS-CMPN)算法采用统一的权函数λn(p)来计算变步长,其值设为1,使得算法参数依赖。针对这一约束,提出了一种改进的VSS-CMPN (MVSS-CMPN)算法,该算法使用时变加权函数来避免算法依赖于控制其比例性和初始化的预定义参数。仿真结果表明,由于脉冲噪声的干扰,所提出的MVSS-CMPN算法均方误差达到了较好的稳态,收敛速度较快。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Modified Variable Step-Size Continuous Mixed p-Norm Algorithm for System Identification
A modified variable step-size continuous mixed -norm (MVSS-CMPN) algorithm is introduced for system identification. The proposed algorithm is applied to serial input serial output (SISO) and auto regressive moving average (ARMA) systems in the presence of impulsive noise. The standard variable step-size continuous mixed p-norm (VSS-CMPN) algorithm employs a uniform weighting function λn(p) whose value is assumed as one for the calculation of the variable step size, which makes the algorithm parameter dependent. To act on this constraint, a modified VSS-CMPN (MVSS-CMPN) algorithm is introduced where a time-varying weighting function is used in order to avoid the dependence of algorithm on predefined parameters controlling its proportionality and initialisation. From the simulation results, it is shown that the mean square error of the proposed MVSS-CMPN algorithm attains a better steady state and converges faster due to impulsive noise interference.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信