Jae-Sung Yang, June Kee Min, Choongmo Yang, Keeyoung Jung
{"title":"氯化镍钠电池模块热管理的集总分析模型","authors":"Jae-Sung Yang, June Kee Min, Choongmo Yang, Keeyoung Jung","doi":"10.1109/EESAT55007.2022.9998025","DOIUrl":null,"url":null,"abstract":"A novel lumped analytical model was developed to predict the overall thermal management cycle for sodium nickel chloride (Na-NiCl2) battery module enabling reduced calculation time. Combining experimentally obtained data and previously existing results, joule heat and enthalpy change models for a single cell were established. A four-step numerical lumped model based on the energy balance was formulated considering joule heat, enthalpy changes in electrochemical reaction, natural convection loss, and inner heater configuration. Calculated results from the model are in a good agreement with those obtained from the full 3D computational fluid dynamics algorithm. A set of analyses of electrochemical load cycles showed that the proposed model can be successfully utilized in predicting thermal distributions of various hypothetical modules with different stack sizes, which can greatly expedite the delivery of newly designed high temperature battery modules.","PeriodicalId":310250,"journal":{"name":"2022 IEEE Electrical Energy Storage Application and Technologies Conference (EESAT)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Lumped Analytical Model for Thermal Management of Sodium Nickel Chloride Battery Module\",\"authors\":\"Jae-Sung Yang, June Kee Min, Choongmo Yang, Keeyoung Jung\",\"doi\":\"10.1109/EESAT55007.2022.9998025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A novel lumped analytical model was developed to predict the overall thermal management cycle for sodium nickel chloride (Na-NiCl2) battery module enabling reduced calculation time. Combining experimentally obtained data and previously existing results, joule heat and enthalpy change models for a single cell were established. A four-step numerical lumped model based on the energy balance was formulated considering joule heat, enthalpy changes in electrochemical reaction, natural convection loss, and inner heater configuration. Calculated results from the model are in a good agreement with those obtained from the full 3D computational fluid dynamics algorithm. A set of analyses of electrochemical load cycles showed that the proposed model can be successfully utilized in predicting thermal distributions of various hypothetical modules with different stack sizes, which can greatly expedite the delivery of newly designed high temperature battery modules.\",\"PeriodicalId\":310250,\"journal\":{\"name\":\"2022 IEEE Electrical Energy Storage Application and Technologies Conference (EESAT)\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE Electrical Energy Storage Application and Technologies Conference (EESAT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EESAT55007.2022.9998025\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Electrical Energy Storage Application and Technologies Conference (EESAT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EESAT55007.2022.9998025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Lumped Analytical Model for Thermal Management of Sodium Nickel Chloride Battery Module
A novel lumped analytical model was developed to predict the overall thermal management cycle for sodium nickel chloride (Na-NiCl2) battery module enabling reduced calculation time. Combining experimentally obtained data and previously existing results, joule heat and enthalpy change models for a single cell were established. A four-step numerical lumped model based on the energy balance was formulated considering joule heat, enthalpy changes in electrochemical reaction, natural convection loss, and inner heater configuration. Calculated results from the model are in a good agreement with those obtained from the full 3D computational fluid dynamics algorithm. A set of analyses of electrochemical load cycles showed that the proposed model can be successfully utilized in predicting thermal distributions of various hypothetical modules with different stack sizes, which can greatly expedite the delivery of newly designed high temperature battery modules.