利用cnn改进GPS和北斗扩展轨道预测

Jaakko Pihlajasalo, H. Leppäkoski, S. Ali-Löytty, R. Piché
{"title":"利用cnn改进GPS和北斗扩展轨道预测","authors":"Jaakko Pihlajasalo, H. Leppäkoski, S. Ali-Löytty, R. Piché","doi":"10.1109/EURONAV.2018.8433244","DOIUrl":null,"url":null,"abstract":"This paper presents a method for improving the accuracy of extended GNSS satellite orbit predictions with convolutional neural networks (CNN). Satellite orbit predictions are used in self-assisted GNSS to reduce the Time to First Fix of a satellite positioning device. We describe the models we use to predict the satellite orbit and present the improvement method that uses CNN. The CNN estimates future prediction errors of our model and these estimates are used to correct our orbit predictions. We also describe how the neural network can be implemented into our prediction algorithm. In tests with GPS and BeiDou data, the method significantly improves orbit prediction accuracy. For example, the 68% error quantile of 7 day orbit prediction errors of GPS satellites was reduced by 45% on average.","PeriodicalId":434266,"journal":{"name":"2018 European Navigation Conference (ENC)","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Improvement of GPS and BeiDou extended orbit predictions with CNNs\",\"authors\":\"Jaakko Pihlajasalo, H. Leppäkoski, S. Ali-Löytty, R. Piché\",\"doi\":\"10.1109/EURONAV.2018.8433244\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a method for improving the accuracy of extended GNSS satellite orbit predictions with convolutional neural networks (CNN). Satellite orbit predictions are used in self-assisted GNSS to reduce the Time to First Fix of a satellite positioning device. We describe the models we use to predict the satellite orbit and present the improvement method that uses CNN. The CNN estimates future prediction errors of our model and these estimates are used to correct our orbit predictions. We also describe how the neural network can be implemented into our prediction algorithm. In tests with GPS and BeiDou data, the method significantly improves orbit prediction accuracy. For example, the 68% error quantile of 7 day orbit prediction errors of GPS satellites was reduced by 45% on average.\",\"PeriodicalId\":434266,\"journal\":{\"name\":\"2018 European Navigation Conference (ENC)\",\"volume\":\"52 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 European Navigation Conference (ENC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EURONAV.2018.8433244\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 European Navigation Conference (ENC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EURONAV.2018.8433244","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

提出了一种利用卷积神经网络(CNN)提高扩展GNSS卫星轨道预测精度的方法。卫星轨道预测用于自助GNSS,以减少卫星定位设备的首次定位时间。本文描述了用于卫星轨道预测的模型,并提出了利用CNN的改进方法。CNN估计我们模型未来的预测误差,这些估计被用来纠正我们的轨道预测。我们还描述了如何将神经网络实现到我们的预测算法中。在GPS和北斗数据的测试中,该方法显著提高了轨道预测精度。例如,GPS卫星7天轨道预测误差68%的分位数平均降低了45%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improvement of GPS and BeiDou extended orbit predictions with CNNs
This paper presents a method for improving the accuracy of extended GNSS satellite orbit predictions with convolutional neural networks (CNN). Satellite orbit predictions are used in self-assisted GNSS to reduce the Time to First Fix of a satellite positioning device. We describe the models we use to predict the satellite orbit and present the improvement method that uses CNN. The CNN estimates future prediction errors of our model and these estimates are used to correct our orbit predictions. We also describe how the neural network can be implemented into our prediction algorithm. In tests with GPS and BeiDou data, the method significantly improves orbit prediction accuracy. For example, the 68% error quantile of 7 day orbit prediction errors of GPS satellites was reduced by 45% on average.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信